xBitterT5: an explainable transformer-based framework with multimodal inputs for identifying bitter-taste peptides

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nguyen Doan Hieu Nguyen, Nhat Truong Pham, Duong Thanh Tran, Leyi Wei, Adeel Malik, Balachandran Manavalan
{"title":"xBitterT5: an explainable transformer-based framework with multimodal inputs for identifying bitter-taste peptides","authors":"Nguyen Doan Hieu Nguyen,&nbsp;Nhat Truong Pham,&nbsp;Duong Thanh Tran,&nbsp;Leyi Wei,&nbsp;Adeel Malik,&nbsp;Balachandran Manavalan","doi":"10.1186/s13321-025-01078-1","DOIUrl":null,"url":null,"abstract":"<div><p>Bitter peptides (BPs), derived from the hydrolysis of proteins in food, play a crucial role in both food science and biomedicine by influencing taste perception and participating in various physiological processes. Accurate identification of BPs is essential for understanding food quality and potential health impacts. Traditional machine learning approaches for BP identification have relied on conventional feature descriptors, achieving moderate success but struggling with the complexities of biological sequence data. Recent advances utilizing protein language model embedding and meta-learning approaches have improved the accuracy, but frequently neglect the molecular representations of peptides and lack interpretability. In this study, we propose xBitterT5, a novel multimodal and interpretable framework for BP identification that integrates pretrained transformer-based embeddings from BioT5+ with the combination of peptide sequence and its SELFIES molecular representation. Specifically, incorporating both peptide sequences and their molecular strings, xBitterT5 demonstrates superior performance compared to previous methods on the same benchmark datasets. Importantly, the model provides residue-level interpretability, highlighting chemically meaningful substructures that significantly contribute to its bitterness, thus offering mechanistic insights beyond black-box predictions. A user-friendly web server (https://balalab-skku.org/xBitterT5/) and a standalone version (https://github.com/cbbl-skku-org/xBitterT5/) are freely available to support both computational biologists and experimental researchers in peptide-based food and biomedicine.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01078-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01078-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bitter peptides (BPs), derived from the hydrolysis of proteins in food, play a crucial role in both food science and biomedicine by influencing taste perception and participating in various physiological processes. Accurate identification of BPs is essential for understanding food quality and potential health impacts. Traditional machine learning approaches for BP identification have relied on conventional feature descriptors, achieving moderate success but struggling with the complexities of biological sequence data. Recent advances utilizing protein language model embedding and meta-learning approaches have improved the accuracy, but frequently neglect the molecular representations of peptides and lack interpretability. In this study, we propose xBitterT5, a novel multimodal and interpretable framework for BP identification that integrates pretrained transformer-based embeddings from BioT5+ with the combination of peptide sequence and its SELFIES molecular representation. Specifically, incorporating both peptide sequences and their molecular strings, xBitterT5 demonstrates superior performance compared to previous methods on the same benchmark datasets. Importantly, the model provides residue-level interpretability, highlighting chemically meaningful substructures that significantly contribute to its bitterness, thus offering mechanistic insights beyond black-box predictions. A user-friendly web server (https://balalab-skku.org/xBitterT5/) and a standalone version (https://github.com/cbbl-skku-org/xBitterT5/) are freely available to support both computational biologists and experimental researchers in peptide-based food and biomedicine.

xbitt5:一个可解释的基于转换器的框架,具有多模态输入,用于识别苦味肽
苦肽(Bitter peptides, BPs)是由食物中的蛋白质水解而成,通过影响味觉和参与多种生理过程,在食品科学和生物医学中发挥着重要作用。准确识别bp对于了解食品质量和潜在的健康影响至关重要。BP识别的传统机器学习方法依赖于传统的特征描述符,取得了中等程度的成功,但在生物序列数据的复杂性方面存在困难。利用蛋白质语言模型嵌入和元学习方法的最新进展提高了准确性,但经常忽略肽的分子表示和缺乏可解释性。在这项研究中,我们提出了一种新的多模态和可解释的BP识别框架xBitterT5,它将来自BioT5+的预训练变压器嵌入与肽序列及其自定义分子表示相结合。具体来说,结合肽序列及其分子链,xBitterT5在相同的基准数据集上比以前的方法表现出更优越的性能。重要的是,该模型提供了残留水平的可解释性,突出了化学上有意义的子结构,这些子结构对其苦味有重要贡献,从而提供了超越黑箱预测的机制见解。一个用户友好的web服务器(https://balalab-skku.org/xBitterT5/)和一个独立的版本(https://github.com/cbbl-skku-org/xBitterT5/)是免费的,以支持计算生物学家和实验研究人员在肽类食品和生物医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信