Kirillov–Lipsman orbit method of a class of Gelfand pairs: part I

IF 0.7 Q2 MATHEMATICS
Aymen Rahali, Ibtissem Ben Chenni
{"title":"Kirillov–Lipsman orbit method of a class of Gelfand pairs: part I","authors":"Aymen Rahali,&nbsp;Ibtissem Ben Chenni","doi":"10.1007/s13370-025-01354-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(G:=K\\ltimes N\\)</span> be the semidirect product with Lie algebra <span>\\(\\mathfrak {g},\\)</span> where <i>N</i> is a simply connected nilpotent Lie group, and <i>K</i> is a subgroup of the automorphisms group, <i>Aut</i>(<i>N</i>),  of <i>N</i>. We say that the pair (<i>K</i>, <i>N</i>) is a nilpotent Gelfand pair when the set <span>\\(L_K^1(N)\\)</span> of integrable <i>K</i>-invariant functions on <i>N</i> forms an abelian algebra under convolution. According to Lipsman, the unitary dual <span>\\(\\widehat{G}\\)</span> of <i>G</i> is in one-to-one correspondence with the space of admissible coadjoint orbits <span>\\(\\mathfrak {g}^\\ddag /G\\)</span> of <i>G</i>. Under some assumptions on the pair (<i>K</i>, <i>N</i>) we will show in this paper and its sequel (part II), that the Kirillov–Lipsman bijection </p><div><div><span>$$\\widehat{G}\\simeq \\mathfrak {g}^\\ddagger /G$$</span></div></div><p>is a homeomorphism for a class of Lie groups associated with the nilpotent Gelfand pairs (<i>K</i>, <i>N</i>). Part I (this paper) concerns generalities and the study of the convergence in the quotient space <span>\\(\\mathfrak {g}^\\ddag /G.\\)</span> More precisely, we give a necessary and sufficient conditions when a sequence of admissible coadjoint orbits converges in <span>\\(\\mathfrak {g}^\\ddag /G.\\)</span></p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01354-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(G:=K\ltimes N\) be the semidirect product with Lie algebra \(\mathfrak {g},\) where N is a simply connected nilpotent Lie group, and K is a subgroup of the automorphisms group, Aut(N),  of N. We say that the pair (KN) is a nilpotent Gelfand pair when the set \(L_K^1(N)\) of integrable K-invariant functions on N forms an abelian algebra under convolution. According to Lipsman, the unitary dual \(\widehat{G}\) of G is in one-to-one correspondence with the space of admissible coadjoint orbits \(\mathfrak {g}^\ddag /G\) of G. Under some assumptions on the pair (KN) we will show in this paper and its sequel (part II), that the Kirillov–Lipsman bijection

$$\widehat{G}\simeq \mathfrak {g}^\ddagger /G$$

is a homeomorphism for a class of Lie groups associated with the nilpotent Gelfand pairs (KN). Part I (this paper) concerns generalities and the study of the convergence in the quotient space \(\mathfrak {g}^\ddag /G.\) More precisely, we give a necessary and sufficient conditions when a sequence of admissible coadjoint orbits converges in \(\mathfrak {g}^\ddag /G.\)

一类Gelfand对的Kirillov-Lipsman轨道方法:第1部分
让 \(G:=K\ltimes N\) 是李代数的半直积 \(\mathfrak {g},\) 其中N是单连通幂零李群,K是N的自同构群Aut(N)的子群,我们说(K, N)是幂零Gelfand对,当集合 \(L_K^1(N)\) 在N上的可积k不变函数构成卷积下的阿贝尔代数。根据利普斯曼的说法,一元对偶 \(\widehat{G}\) 与可容许伴轨道空间是一一对应的 \(\mathfrak {g}^\ddag /G\) 在对(K, N)的某些假设下,我们将在本文及其后续(第二部分)中证明Kirillov-Lipsman双射 $$\widehat{G}\simeq \mathfrak {g}^\ddagger /G$$是一类与幂零Gelfand对(K, N)相关的李群的同胚。第一部分是关于商空间收敛性的一般性质和研究 \(\mathfrak {g}^\ddag /G.\) 更确切地说,我们给出了一系列可容许伴轨收敛于的充分必要条件 \(\mathfrak {g}^\ddag /G.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信