Mahdi Alipoor, Saman Kazemi, Reza Zarghami, Navid Mostoufi
{"title":"CFD-DEM Investigation of the effects of particle size and fluidization regime on heat transfer in fluidized beds","authors":"Mahdi Alipoor, Saman Kazemi, Reza Zarghami, Navid Mostoufi","doi":"10.1007/s40571-025-01018-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an in-depth study of heat transfer in fluidized beds, employing the CFD-DEM technique. The primary focus is to examine the impacts of inlet gas velocity, fluidization regime, and particle size on the thermal behavior of fluidized beds. The results revealed that thermal convection predominantly governs heat transfer in fluidized beds, accounting for the largest fraction of the overall heat transfer process. Particle–fluid–particle thermal conduction was found to contribute approximately 10–20% of the heat transfer, whereas particle–particle conduction exhibits a minor role. Upon increasing the inlet gas velocity, the convection rate intensifies, whereas the particle–fluid–particle conduction rate decreases. Furthermore, the study highlights the differences in temperature distribution between turbulent and bubbling fluidized beds. Turbulent bed demonstrated a more uniform and homogenous particle temperature compared to bubbling. At similar fluidization numbers in bubbling beds, increasing particle diameter enhances thermal convection while reducing particle–fluid–particle conduction. In contrast, the turbulent regime shows minimal differences in heat transfer mechanisms when particle size varies. Additionally, smaller particles are found to significantly improve temperature uniformity in fluidized beds. A comprehensive comparison of simulation results with experimental data validates the accuracy of the employed model, reinforcing its ability to predict heat transfer in fluidized beds reliably. This research provides valuable insights into the complex interplay of various mechanisms of heat transfer within fluidized beds, enabling engineers and researchers to optimize bed performance and enhance temperature control in various industrial applications.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"12 4","pages":"2037 - 2058"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-025-01018-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an in-depth study of heat transfer in fluidized beds, employing the CFD-DEM technique. The primary focus is to examine the impacts of inlet gas velocity, fluidization regime, and particle size on the thermal behavior of fluidized beds. The results revealed that thermal convection predominantly governs heat transfer in fluidized beds, accounting for the largest fraction of the overall heat transfer process. Particle–fluid–particle thermal conduction was found to contribute approximately 10–20% of the heat transfer, whereas particle–particle conduction exhibits a minor role. Upon increasing the inlet gas velocity, the convection rate intensifies, whereas the particle–fluid–particle conduction rate decreases. Furthermore, the study highlights the differences in temperature distribution between turbulent and bubbling fluidized beds. Turbulent bed demonstrated a more uniform and homogenous particle temperature compared to bubbling. At similar fluidization numbers in bubbling beds, increasing particle diameter enhances thermal convection while reducing particle–fluid–particle conduction. In contrast, the turbulent regime shows minimal differences in heat transfer mechanisms when particle size varies. Additionally, smaller particles are found to significantly improve temperature uniformity in fluidized beds. A comprehensive comparison of simulation results with experimental data validates the accuracy of the employed model, reinforcing its ability to predict heat transfer in fluidized beds reliably. This research provides valuable insights into the complex interplay of various mechanisms of heat transfer within fluidized beds, enabling engineers and researchers to optimize bed performance and enhance temperature control in various industrial applications.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.