A fractional geoKdV model in higher dimensional oceanic flows and its applications in geophysics

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Md. Sabur Uddin, Alrazi Abdeljabbar,  Harun-Or-Roshid, Mst. Shekha Khatun, Md. Mamunur Roshid
{"title":"A fractional geoKdV model in higher dimensional oceanic flows and its applications in geophysics","authors":"Md. Sabur Uddin,&nbsp;Alrazi Abdeljabbar,&nbsp; Harun-Or-Roshid,&nbsp;Mst. Shekha Khatun,&nbsp;Md. Mamunur Roshid","doi":"10.1007/s12648-025-03554-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this manuscript, our goal is to investigate effects of Coriolis constant attribute on obtained solutions for the geoKdV equation. Two effective techniques will be employed to unveil diverse manifestations of soliton behaviors produced by the simple equation method and the modified generalized exponential rational function technique (mGERFT). Our suggested procedures are implemented for obtaining various types of exact solutions of geoKdV equation. These methods allow us to obtain solutions formulated in terms of special functions, which are very useful in many different branches of mathematical physics. Furthermore, our research will be presented novel and distinctive arrangements of soliton behaviors derived from this model, offering perspectives on real-world uses in the field of geophysics. As a result, we deliver accurate wave solutions for bright and dark bell-shaped waves, multiple single solitons, exponential solutions and periodic waves profile. Using the computational program Maple, we have produced multiple 2D plots and 3D plots with contour lines of our obtained solutions. These structures can also characterize various explanations for other models in the purviews of nonlinear science and engineering.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 10","pages":"3849 - 3863"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-025-03554-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript, our goal is to investigate effects of Coriolis constant attribute on obtained solutions for the geoKdV equation. Two effective techniques will be employed to unveil diverse manifestations of soliton behaviors produced by the simple equation method and the modified generalized exponential rational function technique (mGERFT). Our suggested procedures are implemented for obtaining various types of exact solutions of geoKdV equation. These methods allow us to obtain solutions formulated in terms of special functions, which are very useful in many different branches of mathematical physics. Furthermore, our research will be presented novel and distinctive arrangements of soliton behaviors derived from this model, offering perspectives on real-world uses in the field of geophysics. As a result, we deliver accurate wave solutions for bright and dark bell-shaped waves, multiple single solitons, exponential solutions and periodic waves profile. Using the computational program Maple, we have produced multiple 2D plots and 3D plots with contour lines of our obtained solutions. These structures can also characterize various explanations for other models in the purviews of nonlinear science and engineering.

高维海洋流的分数阶geoKdV模型及其在地球物理中的应用
在这篇文章中,我们的目标是研究科里奥利常数属性对geoKdV方程解的影响。本文将采用两种有效的技术来揭示由简单方程法和修正广义指数有理函数技术(mGERFT)产生的孤子行为的各种表现。我们建议的程序用于获得各种类型的geoKdV方程的精确解。这些方法使我们能够得到用特殊函数表示的解,这在数学物理的许多不同分支中非常有用。此外,我们的研究将提出从该模型衍生的新颖和独特的孤子行为安排,为地球物理领域的实际应用提供视角。因此,我们提供了准确的波解明暗钟形波,多个单孤子,指数解和周期波剖面。利用Maple计算程序,我们用我们得到的解的等高线绘制了多个二维和三维图。这些结构也可以在非线性科学和工程的范围内描述对其他模型的各种解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信