Effect of calcination temperature of CeO2/ZnFe2O4/CuFe2O4 nanocomposites: structural, surface area and paramagnetic properties

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Gulime Ravi, K. Thyagarajan
{"title":"Effect of calcination temperature of CeO2/ZnFe2O4/CuFe2O4 nanocomposites: structural, surface area and paramagnetic properties","authors":"Gulime Ravi,&nbsp;K. Thyagarajan","doi":"10.1007/s12648-025-03618-9","DOIUrl":null,"url":null,"abstract":"<div><p>This research examined how varying calcination temperatures affected the fundamental characteristics of ZnFe<sub>2</sub>O<sub>4</sub>/CuFe<sub>2</sub>O<sub>4</sub>/CeO<sub>2</sub> nanocomposites. These materials were created using an autocombustion technique and then subjected to calcination at 600, 700, and 800 °C, with the resulting samples labeled CeZnCu 1, CeZnCu 2, and CeZnCu 3. X-ray diffraction (XRD) measurements demonstrated that the purity of the crystalline phases and the average crystallite dimensions were significantly altered by the temperature of calcination. The material's morphology, specifically particle size and shape alterations resulting from heat treatment, was visualized using field emission scanning electron microscopy (FESEM). Chemical bonding was confirmed through Fourier transform infrared (FTIR) spectroscopy, and the elemental surface composition was quantified using X-ray photoelectron spectroscopy (XPS). Surface area and pore characteristics were determined via Brunauer–Emmett–Teller (BET) analysis, which demonstrated a significant textural modification due to the thermal processing. The study's findings emphasize the crucial role of calcination temperature in controlling the physical and chemical properties of these nanocomposites. This work offers valuable information for optimizing the synthesis process, allowing for the precise adjustment of material properties for diverse applications and the advancement of material design.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 10","pages":"3767 - 3775"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-025-03618-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research examined how varying calcination temperatures affected the fundamental characteristics of ZnFe2O4/CuFe2O4/CeO2 nanocomposites. These materials were created using an autocombustion technique and then subjected to calcination at 600, 700, and 800 °C, with the resulting samples labeled CeZnCu 1, CeZnCu 2, and CeZnCu 3. X-ray diffraction (XRD) measurements demonstrated that the purity of the crystalline phases and the average crystallite dimensions were significantly altered by the temperature of calcination. The material's morphology, specifically particle size and shape alterations resulting from heat treatment, was visualized using field emission scanning electron microscopy (FESEM). Chemical bonding was confirmed through Fourier transform infrared (FTIR) spectroscopy, and the elemental surface composition was quantified using X-ray photoelectron spectroscopy (XPS). Surface area and pore characteristics were determined via Brunauer–Emmett–Teller (BET) analysis, which demonstrated a significant textural modification due to the thermal processing. The study's findings emphasize the crucial role of calcination temperature in controlling the physical and chemical properties of these nanocomposites. This work offers valuable information for optimizing the synthesis process, allowing for the precise adjustment of material properties for diverse applications and the advancement of material design.

煅烧温度对CeO2/ZnFe2O4/CuFe2O4纳米复合材料结构、表面积和顺磁性的影响
本研究考察了不同焙烧温度对ZnFe2O4/CuFe2O4/CeO2纳米复合材料基本特性的影响。这些材料使用自燃烧技术生成,然后在600、700和800°C下进行煅烧,所得样品标记为cezncu1、cezncu2和cezncu3。x射线衍射(XRD)测试表明,煅烧温度显著改变了晶相的纯度和平均晶粒尺寸。利用场发射扫描电子显微镜(FESEM)观察了材料的形貌,特别是热处理后的粒度和形状变化。通过傅里叶变换红外光谱(FTIR)确定了化学键,并用x射线光电子能谱(XPS)定量了元素表面组成。通过布鲁诺尔-埃米特-泰勒(BET)分析确定了表面面积和孔隙特征,表明热处理导致了显著的结构改变。该研究的发现强调了煅烧温度在控制这些纳米复合材料的物理和化学性质方面的关键作用。这项工作为优化合成过程提供了有价值的信息,允许精确调整材料特性以适应不同的应用和材料设计的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信