High-frequency stock price prediction via deep learning

IF 4.9
Jianlong Bao , Takayuki Morimoto
{"title":"High-frequency stock price prediction via deep learning","authors":"Jianlong Bao ,&nbsp;Takayuki Morimoto","doi":"10.1016/j.mlwa.2025.100716","DOIUrl":null,"url":null,"abstract":"<div><div>We performed a comparative analysis of deep learning methods for high-frequency stock price prediction. Instead of directly analyzing one-dimensional stock price time series data, this study employs the Gramian Angular Summation Field method (Wang and Oates, 2015) to transform high-frequency stock prices into images, which are used to train ResNet models for prediction (hereafter referred to as the image-based prediction method). In addition, the same dataset (one-dimensional time series without image conversion) is used to train Artificial Neural Network(ANN), Long Short-Term Memory(LSTM), and one-dimensional convolutional neural network(1D-CNN) models, enabling a performance comparison with the results of the image-based prediction method.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"21 ","pages":"Article 100716"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We performed a comparative analysis of deep learning methods for high-frequency stock price prediction. Instead of directly analyzing one-dimensional stock price time series data, this study employs the Gramian Angular Summation Field method (Wang and Oates, 2015) to transform high-frequency stock prices into images, which are used to train ResNet models for prediction (hereafter referred to as the image-based prediction method). In addition, the same dataset (one-dimensional time series without image conversion) is used to train Artificial Neural Network(ANN), Long Short-Term Memory(LSTM), and one-dimensional convolutional neural network(1D-CNN) models, enabling a performance comparison with the results of the image-based prediction method.
基于深度学习的高频股价预测
我们对高频股票价格预测的深度学习方法进行了比较分析。本研究没有直接分析一维股价时间序列数据,而是采用Gramian Angular sum Field方法(Wang and Oates, 2015)将高频股价转换为图像,用于训练ResNet模型进行预测(以下简称基于图像的预测方法)。此外,使用相同的数据集(未经图像转换的一维时间序列)来训练人工神经网络(ANN)、长短期记忆(LSTM)和一维卷积神经网络(1D-CNN)模型,从而与基于图像的预测方法的结果进行性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信