Microwave-assisted, one-pot synthesis of quinazolinone derivatives using SiO2-ZnCl2 and their antioxidant activity

IF 2.1 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Phitovili Sumi , Manthae Phom , Betokali K. Zhimomi , Khonzani Yanthan , Tonge WW , Shokip Tumtin , Tovishe Phucho
{"title":"Microwave-assisted, one-pot synthesis of quinazolinone derivatives using SiO2-ZnCl2 and their antioxidant activity","authors":"Phitovili Sumi ,&nbsp;Manthae Phom ,&nbsp;Betokali K. Zhimomi ,&nbsp;Khonzani Yanthan ,&nbsp;Tonge WW ,&nbsp;Shokip Tumtin ,&nbsp;Tovishe Phucho","doi":"10.1016/j.jorganchem.2025.123816","DOIUrl":null,"url":null,"abstract":"<div><div>A series of quinazolinone derivatives were efficiently synthesized via a microwave-assisted one-pot multicomponent reaction employing silica-supported zinc chloride (SiO<sub>2</sub>-ZnCl<sub>2</sub>) as an environmentally benign and recyclable catalyst under solvent-free conditions. This synthetic strategy offers notable benefits, including short reaction times, high yields, and environmental sustainability, aligning with the principles of green chemistry. The catalytic system exhibits excellent activity and recyclability across multiple reaction cycles, with minimal loss of efficiency. Structural elucidation of the synthesized compounds were confirmed by spectroscopic techniques such as FT-IR, NMR, and mass spectrometry. The antioxidant potential of the synthesized quinazolinone derivatives were investigated for the first time using the DPPH radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay exhibiting significant antioxidant activity. This study highlights an efficient, eco-friendly synthetic route for biologically active N-containing heterocycles with promising pharmacological profiles.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1040 ","pages":"Article 123816"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X25003092","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

A series of quinazolinone derivatives were efficiently synthesized via a microwave-assisted one-pot multicomponent reaction employing silica-supported zinc chloride (SiO2-ZnCl2) as an environmentally benign and recyclable catalyst under solvent-free conditions. This synthetic strategy offers notable benefits, including short reaction times, high yields, and environmental sustainability, aligning with the principles of green chemistry. The catalytic system exhibits excellent activity and recyclability across multiple reaction cycles, with minimal loss of efficiency. Structural elucidation of the synthesized compounds were confirmed by spectroscopic techniques such as FT-IR, NMR, and mass spectrometry. The antioxidant potential of the synthesized quinazolinone derivatives were investigated for the first time using the DPPH radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay exhibiting significant antioxidant activity. This study highlights an efficient, eco-friendly synthetic route for biologically active N-containing heterocycles with promising pharmacological profiles.

Abstract Image

微波辅助氧化锆一锅法合成喹唑啉酮衍生物及其抗氧化活性
以二氧化硅负载的氯化锌(SiO2-ZnCl2)为催化剂,在无溶剂条件下,通过微波辅助一锅多组分反应,高效合成了一系列喹唑啉酮衍生物。这种合成策略具有显著的优点,包括反应时间短,产量高,环境可持续性,符合绿色化学的原则。该催化体系在多个反应循环中表现出优异的活性和可回收性,效率损失最小。通过FT-IR, NMR和质谱等光谱技术证实了合成化合物的结构。首次利用DPPH自由基清除实验和铁还原抗氧化能力(FRAP)实验对合成的喹唑啉酮衍生物的抗氧化能力进行了研究。本研究为具有生物活性的含n杂环化合物提供了一条高效、环保的合成途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Organometallic Chemistry
Journal of Organometallic Chemistry 化学-无机化学与核化学
CiteScore
4.40
自引率
8.70%
发文量
221
审稿时长
36 days
期刊介绍: The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds. Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome. The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信