Mathematical modeling of the impact of HPV vaccine uptake in reducing cervical cancer using a graph-theoretic approach via Caputo fractional-order derivatives

Sylas Oswald , Eunice Mureithi , Berge Tsanou , Michael Chapwanya , Crispin Kahesa , Kijakazi Mashoto
{"title":"Mathematical modeling of the impact of HPV vaccine uptake in reducing cervical cancer using a graph-theoretic approach via Caputo fractional-order derivatives","authors":"Sylas Oswald ,&nbsp;Eunice Mureithi ,&nbsp;Berge Tsanou ,&nbsp;Michael Chapwanya ,&nbsp;Crispin Kahesa ,&nbsp;Kijakazi Mashoto","doi":"10.1016/j.cmpbup.2025.100216","DOIUrl":null,"url":null,"abstract":"<div><div>Human papillomavirus (HPV) is a highly prevalent sexually transmitted infection and the primary cause of cervical cancer, which remains a leading cause of cancer-related mortality among women globally. Despite ongoing vaccination efforts, challenges such as latency, persistent infections, and imperfect vaccine coverage complicate disease control. In this study, we develop a novel fractional-order compartmental model using Caputo derivatives to capture the memory and non-local transmission effects inherent in HPV dynamics. We analyze the model’s epidemiological properties by proving positivity, boundedness, and deriving the effective reproduction number (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>) via a Graph Theoretic approach. Stability of disease-free and endemic equilibria is established through Lyapunov theory, complemented by Hyers–Ulam stability to ensure robustness. Parameter estimation is performed using Markov Chain Monte Carlo (MCMC), and sensitivity analysis utilizes Partial Rank Correlation Coefficients (PRCC) to identify key drivers of transmission. Our results indicate that achieving 56% vaccination coverage with 45.5% efficacy can reduce <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> below one, supporting herd immunity. Numerical simulations demonstrate that vaccination coverage, timely treatment, and vaccine efficacy critically reduce infection prevalence and disease burden. Furthermore, higher fractional orders accelerate convergence to equilibrium without changing equilibrium values. This work lies in integrating fractional calculus with time-dependent vaccination and treatment controls to realistically model HPV progression and intervention impact. This approach provides a more accurate representation of HPV transmission dynamics, especially the long-term memory effects, thereby offering valuable insights for optimizing public health strategies.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"8 ","pages":"Article 100216"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human papillomavirus (HPV) is a highly prevalent sexually transmitted infection and the primary cause of cervical cancer, which remains a leading cause of cancer-related mortality among women globally. Despite ongoing vaccination efforts, challenges such as latency, persistent infections, and imperfect vaccine coverage complicate disease control. In this study, we develop a novel fractional-order compartmental model using Caputo derivatives to capture the memory and non-local transmission effects inherent in HPV dynamics. We analyze the model’s epidemiological properties by proving positivity, boundedness, and deriving the effective reproduction number (Re) via a Graph Theoretic approach. Stability of disease-free and endemic equilibria is established through Lyapunov theory, complemented by Hyers–Ulam stability to ensure robustness. Parameter estimation is performed using Markov Chain Monte Carlo (MCMC), and sensitivity analysis utilizes Partial Rank Correlation Coefficients (PRCC) to identify key drivers of transmission. Our results indicate that achieving 56% vaccination coverage with 45.5% efficacy can reduce Re below one, supporting herd immunity. Numerical simulations demonstrate that vaccination coverage, timely treatment, and vaccine efficacy critically reduce infection prevalence and disease burden. Furthermore, higher fractional orders accelerate convergence to equilibrium without changing equilibrium values. This work lies in integrating fractional calculus with time-dependent vaccination and treatment controls to realistically model HPV progression and intervention impact. This approach provides a more accurate representation of HPV transmission dynamics, especially the long-term memory effects, thereby offering valuable insights for optimizing public health strategies.
通过卡普托分数阶导数使用图论方法建立HPV疫苗摄取对减少宫颈癌影响的数学模型
人乳头瘤病毒(HPV)是一种非常普遍的性传播感染,也是导致宫颈癌的主要原因,而宫颈癌仍然是全球妇女癌症相关死亡的主要原因。尽管正在进行疫苗接种工作,但诸如潜伏期、持续性感染和疫苗覆盖率不完善等挑战使疾病控制复杂化。在这项研究中,我们开发了一种新的分数阶室室模型,使用卡普托衍生物来捕捉HPV动力学中固有的记忆和非局部传播效应。我们通过图论方法证明了模型的正性、有界性,并推导了有效复制数(Re),从而分析了模型的流行病学性质。通过Lyapunov理论建立了无病和地方性平衡的稳定性,并辅以Hyers-Ulam稳定性以确保鲁棒性。参数估计使用马尔可夫链蒙特卡罗(MCMC)进行,灵敏度分析使用偏秩相关系数(PRCC)来识别传输的关键驱动因素。我们的结果表明,达到56%的疫苗接种率和45.5%的效力,可将Re降至1以下,支持群体免疫。数值模拟表明,疫苗接种覆盖率、及时治疗和疫苗效力大大降低了感染流行率和疾病负担。此外,较高的分数阶在不改变平衡值的情况下加速收敛到平衡。这项工作在于将分数微积分与时间依赖的疫苗接种和治疗控制相结合,以现实地模拟HPV进展和干预影响。这种方法提供了HPV传播动态的更准确的表示,特别是长期记忆效应,从而为优化公共卫生策略提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信