Yimin Li , Chunnuan Zhang , Zihao Meng , Mengkang You , Huajuan Shi
{"title":"Microbial dysbiosis induced in Cyprinus carpio by tetrabromobisphenol A exposure: Mediation through gut barrier impairment and oxidative stress","authors":"Yimin Li , Chunnuan Zhang , Zihao Meng , Mengkang You , Huajuan Shi","doi":"10.1016/j.cbd.2025.101609","DOIUrl":null,"url":null,"abstract":"<div><div>The frequent detection of Tetrabromobisphenol A (TBBPA) in environmental media has elicited considerable scientific concern. The ecotoxicological impacts of TBBPA on intestinal health in the common carp (<em>Cyprinus carpio</em>) were systematically investigated through integrated histopathological, biochemical, and metagenomic analyses. Fish were exposed to environmentally relevant TBBPA concentrations (0, 0.005, 0.05, and 0.5 mg/L) for a 14-day duration. Dose-dependent intestinal damage was induced by TBBPA exposure, manifested as villus fusion and atrophy, oxidative stress (diminished SOD/CAT activities and elevated MDA levels), and downregulated expression of tight junction proteins (<em>ZO-1</em>, <em>Claudin-3</em>, <em>Occludin</em>). This collectively compromised barrier integrity and triggered pro-inflammatory cytokine upregulation of <em>TNF-α</em> alongside anti-inflammatory <em>IL-10</em> suppression. Significant intestinal microbial dysbiosis was detected via 16S rRNA sequencing. Alpha diversity indices were reduced at low concentrations (0.005 mg/L) of TBBPA but elevated at higher concentrations (0.05–0.5 mg/L). TBBPA exposure induced gut microbiota perturbations, characterized by depletion of beneficial taxa (<em>Cetobacterium</em>) and enrichment of opportunistic pathogens (<em>Legionella</em> and <em>Thermomonas</em>). Functional prediction analyses indicated that these microbial alterations may influence carbohydrate metabolism, and vitamin biosynthesis within the intestinal tract of common carp. Collectively, these findings demonstrated that TBBPA disrupted intestinal health via synergistic mechanisms involving oxidative stress, histopathological damage, and microbiota-mediated dysregulation. This investigation addresses a critical knowledge gap regarding the impacts of TBBPA on fish gut microbiota, while providing provided a reference for assessing the potential ecological risks of TBBPA in the environment.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"56 ","pages":"Article 101609"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X25001984","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The frequent detection of Tetrabromobisphenol A (TBBPA) in environmental media has elicited considerable scientific concern. The ecotoxicological impacts of TBBPA on intestinal health in the common carp (Cyprinus carpio) were systematically investigated through integrated histopathological, biochemical, and metagenomic analyses. Fish were exposed to environmentally relevant TBBPA concentrations (0, 0.005, 0.05, and 0.5 mg/L) for a 14-day duration. Dose-dependent intestinal damage was induced by TBBPA exposure, manifested as villus fusion and atrophy, oxidative stress (diminished SOD/CAT activities and elevated MDA levels), and downregulated expression of tight junction proteins (ZO-1, Claudin-3, Occludin). This collectively compromised barrier integrity and triggered pro-inflammatory cytokine upregulation of TNF-α alongside anti-inflammatory IL-10 suppression. Significant intestinal microbial dysbiosis was detected via 16S rRNA sequencing. Alpha diversity indices were reduced at low concentrations (0.005 mg/L) of TBBPA but elevated at higher concentrations (0.05–0.5 mg/L). TBBPA exposure induced gut microbiota perturbations, characterized by depletion of beneficial taxa (Cetobacterium) and enrichment of opportunistic pathogens (Legionella and Thermomonas). Functional prediction analyses indicated that these microbial alterations may influence carbohydrate metabolism, and vitamin biosynthesis within the intestinal tract of common carp. Collectively, these findings demonstrated that TBBPA disrupted intestinal health via synergistic mechanisms involving oxidative stress, histopathological damage, and microbiota-mediated dysregulation. This investigation addresses a critical knowledge gap regarding the impacts of TBBPA on fish gut microbiota, while providing provided a reference for assessing the potential ecological risks of TBBPA in the environment.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.