Downstream Task Guided Masking Learning in Masked Autoencoders Using Multi-Level Optimization.

Han Guo, Ramtin Hosseini, Ruiyi Zhang, Sai Ashish Somayajula, Ranak Roy Chowdhury, Rajesh K Gupta, Pengtao Xie
{"title":"Downstream Task Guided Masking Learning in Masked Autoencoders Using Multi-Level Optimization.","authors":"Han Guo, Ramtin Hosseini, Ruiyi Zhang, Sai Ashish Somayajula, Ranak Roy Chowdhury, Rajesh K Gupta, Pengtao Xie","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Masked Autoencoder (MAE) is a notable method for self-supervised pretraining in visual representation learning. It operates by randomly masking image patches and reconstructing these masked patches using the unmasked ones. A key limitation of MAE lies in its disregard for the varying informativeness of different patches, as it uniformly selects patches to mask. To overcome this, some approaches propose masking based on patch informativeness. However, these methods often do not consider the specific requirements of downstream tasks, potentially leading to suboptimal representations for these tasks. In response, we introduce the Multi-level Optimized Mask Autoencoder (MLO-MAE), a novel framework that leverages end-to-end feedback from downstream tasks to learn an optimal masking strategy during pretraining. Our experimental findings highlight MLO-MAE's significant advancements in visual representation learning. Compared to existing methods, it demonstrates remarkable improvements across diverse datasets and tasks, showcasing its adaptability and efficiency. Our code is available at https://github.com/Alexiland/MLO-MAE.</p>","PeriodicalId":75238,"journal":{"name":"Transactions on machine learning research","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Masked Autoencoder (MAE) is a notable method for self-supervised pretraining in visual representation learning. It operates by randomly masking image patches and reconstructing these masked patches using the unmasked ones. A key limitation of MAE lies in its disregard for the varying informativeness of different patches, as it uniformly selects patches to mask. To overcome this, some approaches propose masking based on patch informativeness. However, these methods often do not consider the specific requirements of downstream tasks, potentially leading to suboptimal representations for these tasks. In response, we introduce the Multi-level Optimized Mask Autoencoder (MLO-MAE), a novel framework that leverages end-to-end feedback from downstream tasks to learn an optimal masking strategy during pretraining. Our experimental findings highlight MLO-MAE's significant advancements in visual representation learning. Compared to existing methods, it demonstrates remarkable improvements across diverse datasets and tasks, showcasing its adaptability and efficiency. Our code is available at https://github.com/Alexiland/MLO-MAE.

基于多级优化的掩蔽自编码器的下游任务引导掩蔽学习。
掩码自编码器(mask Autoencoder, MAE)是视觉表征学习中一种重要的自监督预训练方法。它的工作原理是随机屏蔽图像补丁,并使用未屏蔽的补丁重建这些被屏蔽的补丁。MAE的一个关键限制在于它忽略了不同补丁的不同信息量,因为它统一地选择要掩码的补丁。为了克服这个问题,一些方法提出了基于补丁信息的掩蔽。然而,这些方法通常不考虑下游任务的特定需求,可能导致这些任务的次优表示。作为回应,我们引入了多层次优化掩码自编码器(MLO-MAE),这是一种利用下游任务的端到端反馈在预训练期间学习最优掩码策略的新框架。我们的实验结果突出了MLO-MAE在视觉表征学习方面的显著进步。与现有方法相比,它在不同的数据集和任务上表现出显著的改进,显示了它的适应性和效率。我们的代码可在https://github.com/Alexiland/MLO-MAE上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信