Tunable glassy dynamics in models of dense cellular tissue.

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Helen S Ansell, Chengling Li, Daniel M Sussman
{"title":"Tunable glassy dynamics in models of dense cellular tissue.","authors":"Helen S Ansell, Chengling Li, Daniel M Sussman","doi":"10.1103/ryy4-2xt6","DOIUrl":null,"url":null,"abstract":"<p><p>Observations of glassy dynamics in dense cellular tissues have inspired a wealth of research modeling their collective behavior. Initial studies of the physical properties of several geometric cell models have highlighted anomalous sub-Arrhenius, or \"ultrastrong,\" scaling of the dynamics with temperature. Here we show that the dynamics in this sub-Arrhenius regime deviate even further from the standard glassforming paradigm, displaying unusual scaling of the viscosity with temperature, a lack of breakdown of the Stokes-Einstein-Sutherland relation, and strongly suppressed dynamical heterogeneities. The dynamics in this regime, despite not possessing these hallmarks of glassy behavior, are also distinct from those of simple liquids at low temperatures. These unusual dynamical behaviors can be tuned by controlling the characteristic cell shape index of the model: decreasing this parameter tunes the model between an anomalous and a standard set of glassforming dynamics. Our results add to the growing evidence that these geometric cell models display universal features distinct from those observed in standard glassformers.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"112 1","pages":"L013403"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/ryy4-2xt6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Observations of glassy dynamics in dense cellular tissues have inspired a wealth of research modeling their collective behavior. Initial studies of the physical properties of several geometric cell models have highlighted anomalous sub-Arrhenius, or "ultrastrong," scaling of the dynamics with temperature. Here we show that the dynamics in this sub-Arrhenius regime deviate even further from the standard glassforming paradigm, displaying unusual scaling of the viscosity with temperature, a lack of breakdown of the Stokes-Einstein-Sutherland relation, and strongly suppressed dynamical heterogeneities. The dynamics in this regime, despite not possessing these hallmarks of glassy behavior, are also distinct from those of simple liquids at low temperatures. These unusual dynamical behaviors can be tuned by controlling the characteristic cell shape index of the model: decreasing this parameter tunes the model between an anomalous and a standard set of glassforming dynamics. Our results add to the growing evidence that these geometric cell models display universal features distinct from those observed in standard glassformers.

致密细胞组织模型中的可调玻璃动力学。
密集细胞组织的玻璃动力学观察激发了大量的研究建模他们的集体行为。对几种几何细胞模型的物理性质的初步研究突出了反常的亚阿伦尼乌斯,或“超强”,动力学随温度的缩放。在这里,我们发现亚阿伦尼乌斯状态下的动力学甚至进一步偏离标准的玻璃形成范式,表现出粘度随温度的不同寻常的标度,缺乏Stokes-Einstein-Sutherland关系的破坏,以及强烈抑制的动力学非均质性。这种状态下的动力学,尽管不具有玻璃态行为的这些特征,但也与低温下的简单液体的动力学不同。这些不寻常的动态行为可以通过控制模型的特征细胞形状指数来调整:减少这个参数可以在反常和标准的玻璃成型动力学之间调整模型。我们的结果增加了越来越多的证据,这些几何细胞模型显示出不同于在标准玻璃形成中观察到的普遍特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信