Bias and Efficiency Comparison between Multiple Imputation and Available-Case Analysis for Missing Data in Longitudinal Models.

IF 0.4 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Panpan Zhang, Sharon X Xie
{"title":"Bias and Efficiency Comparison between Multiple Imputation and Available-Case Analysis for Missing Data in Longitudinal Models.","authors":"Panpan Zhang, Sharon X Xie","doi":"10.1007/s12561-025-09493-6","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we compare the performance of available-case analysis (ACA) and several multiple imputation (MI) approaches for handling missing data problems in longitudinal analysis through estimation bias and relative efficiency. When the missingness of covariates depends on observed responses, ACA produces estimation bias, but it is preferred when there are only missing values in longitudinal responses. Multilevel MI methods are not always a solution to longitudinal data analysis. Single-level MI methods, like fully conditional specification (FCS), provide unbiased estimates under a variety of missing data scenarios, and improve efficiency gain in certain scenarios. The general assumption of missing data mechanism is missing at random (MAR). We carry out a systematic synthetic data analysis where missing data exist in longitudinal outcomes or/and covariates under different kinds of missing data generation procedures. The analysis model is a linear mixed-effects model. For each of the missing data scenarios, we give our recommendation (between ACA and a specific MI method) based on theoretical justifications and extensive simulations. In addition, a longitudinal neurodegenerative disease dataset is used as a real case study.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-025-09493-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we compare the performance of available-case analysis (ACA) and several multiple imputation (MI) approaches for handling missing data problems in longitudinal analysis through estimation bias and relative efficiency. When the missingness of covariates depends on observed responses, ACA produces estimation bias, but it is preferred when there are only missing values in longitudinal responses. Multilevel MI methods are not always a solution to longitudinal data analysis. Single-level MI methods, like fully conditional specification (FCS), provide unbiased estimates under a variety of missing data scenarios, and improve efficiency gain in certain scenarios. The general assumption of missing data mechanism is missing at random (MAR). We carry out a systematic synthetic data analysis where missing data exist in longitudinal outcomes or/and covariates under different kinds of missing data generation procedures. The analysis model is a linear mixed-effects model. For each of the missing data scenarios, we give our recommendation (between ACA and a specific MI method) based on theoretical justifications and extensive simulations. In addition, a longitudinal neurodegenerative disease dataset is used as a real case study.

纵向模型中缺失数据的多重输入与有效案例分析的偏差与效率比较。
在本文中,我们通过估计偏差和相对效率比较了可用案例分析(ACA)和几种多重输入(MI)方法处理纵向分析中缺失数据问题的性能。当协变量的缺失取决于观察到的响应时,ACA会产生估计偏差,但当纵向响应中只有缺失值时,ACA是首选的。多层MI方法并不总是纵向数据分析的解决方案。单级MI方法,如全条件规范(FCS),在各种缺失数据场景下提供无偏估计,并在某些场景下提高效率增益。丢失数据机制的一般假设是随机丢失(MAR)。我们进行了系统的综合数据分析,其中纵向结果或/和协变量在不同类型的缺失数据生成程序下存在缺失数据。分析模型为线性混合效应模型。对于每个缺失的数据场景,我们给出了基于理论论证和广泛模拟的建议(在ACA和特定MI方法之间)。此外,纵向神经退行性疾病数据集被用作实际案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics in Biosciences
Statistics in Biosciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.00
自引率
0.00%
发文量
28
期刊介绍: Statistics in Biosciences (SIBS) is published three times a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science. SIBS publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIBS share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信