{"title":"[LncRNA-UCA1-microRNA-143-Notch1 regulates autophagy in myocardial ischemia reperfusion injury induced by cardiopulmonary bypass].","authors":"Lingzhi Jiang, Mingshan Wang, Ye Shen","doi":"10.3760/cma.j.cn121430-20240329-00298","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To observe the degree of myocardial cell injury and the changes in autophagy level in rats with myocardial ischemia/reperfusion (I/R) injury induced by cardiopulmonary bypass (CPB), and to explore the regulatory role of the long non-coding RNA-urothelial carcinoma antigen 1-microRNA-143-Notch1 axis (lncRNA-UCA1-miR-143-Notch1 axis) in myocardial I/R injury induced by CPB.</p><p><strong>Methods: </strong>Healthy male Sprague-Dawley (SD) rats were randomly divided into the following groups using the random number method: Sham operation (Sham) group, myocardial I/R injury model group (model group), empty lentivirus group, lncRNA-UCA1 upregulation group, miR-143 downregulation group, and lncRNA-UCA1 upregulation+miR-143 upregulation group, with 9 rats in each group. The rat model of myocardial I/R injury induced by CPB was established by thoracotomy aortic ligation under cardiopulmonary bypass support; in the Sham group, only threading was performed without ligation, and other procedures were the same. Seventy-two hours before modeling, the lncRNA-UCA1 upregulated group was injected with 100 μL of myocardial tissue-specific adeno-associated virus (AAV) overexpression vector of lncRNA-UCA1 via tail vein, the miR-143 downregulated group was injected with 100 μL of AAV short hairpin RNA (shRNA) vector of miR-143 via tail vein, the lncRNA-UCA1 upregulation+miR-143 upregulation group was injected with 100 μL of myocardial tissue-AAV overexpression vector of lncRNA-UCA1 and 100 μL of AAV overexpression vector of miR-143 via tail vein, and the empty vector lentivirus group was injected with 100 μL of AAV empty vector (virus titers were 1×10<sup>9</sup> TU/mL); the Sham group and the model group were injected with equal amounts of normal saline. The animals were euthanized 24 hours after intervention and cardiac tissue specimens were collected. After hematoxylin eosin (HE) staining, the damage of myocardial cells and the changes of muscle fiber tissue were observed under a light microscope; after dual staining with uranyl acetate and lead citrate, the ultrastructural damage of heart tissue was observed under a transmission electron microscopy; the expression of lncRNA-UCA1, miR-143, and Notch1 mRNA in myocardial tissue was detected by real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-PCR); the expression of microtubule 1 light chain 3-II/I (LC3-II/I) and Notch1 protein in myocardial tissue was detected by Western blotting.</p><p><strong>Results: </strong>Compared with the Sham group, the myocardial cells of rats in the model group were enlarged, the intercellular space increased, autophagosomes increased, the arrangement of myocardial fibers was disordered, mitochondrial proliferated and deformed. The expression levels of lncRNA-UCA1 and Notch1 mRNA, as well as the protein expression levels of LC3-II/I and Notch1 were significantly increased, while the expression level of miR-143 was significantly decreased. Compared with the model group, the degree of myocardial cell injury in the lncRNA-UCA1 upregulation group and miR-143 downregulation group was significantly alleviated, the expression levels of Notch1 mRNA, LC3-II/I, and Notch1 protein were significantly increased [Notch1 mRNA (2<sup>-ΔΔCt</sup>): 2.66±0.24, 2.03±0.23 vs. 1.45±0.13, LC3-II/I: 2.10±0.21, 1.92±0.19 vs. 1.39±0.14, Notch1 protein (Notch1/GAPDH): 1.72±0.16, 1.57±0.16 vs. 1.34±0.13, all P < 0.05], and the expression level of miR-143 was significantly decreased (2<sup>-ΔΔCt</sup>: 0.50±0.06, 0.52±0.06 vs.0.71±0.06, P < 0.05). The expression level of lncRNA-UCA1 in the lncRNA-UCA1 upregulated group was significantly higher than that in the model group (2<sup>-ΔΔCt</sup>: 2.47±0.22 vs. 1.43±0.14, P < 0.05), while there was no significant difference in the miR-143 downregulation group compared with the model group (2<sup>-ΔΔCt</sup>: 1.50±0.16 vs. 1.43±0.14, P > 0.05). There was no significant difference in the degree of myocardial cell injury in the empty load lentivirus group and the lncRNA-UCA1 upregulation+miR-143 upregulation group compared to the model group. There were no significant differences in the expression of miR-143, Notch1 mRNA, and the autophagy level in these two groups compared to the model group. The expression level of lncRNA-UCA1 in the lncRNA-UCA1 upregulation+miR-143 upregulation group was significantly higher than that in the model group (2<sup>-ΔΔCt</sup>: 2.47±0.20 vs. 1.43±0.14, P < 0.05).</p><p><strong>Conclusions: </strong>Autophagy is involved in the pathological process of myocardial I/R injury induced by CPB. The lncRNA-UCA1-microRNA-143-Notch1 axis may regulate the autophagy level to participate in the I/R injury process.</p>","PeriodicalId":24079,"journal":{"name":"Zhonghua wei zhong bing ji jiu yi xue","volume":"37 6","pages":"576-582"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua wei zhong bing ji jiu yi xue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121430-20240329-00298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To observe the degree of myocardial cell injury and the changes in autophagy level in rats with myocardial ischemia/reperfusion (I/R) injury induced by cardiopulmonary bypass (CPB), and to explore the regulatory role of the long non-coding RNA-urothelial carcinoma antigen 1-microRNA-143-Notch1 axis (lncRNA-UCA1-miR-143-Notch1 axis) in myocardial I/R injury induced by CPB.
Methods: Healthy male Sprague-Dawley (SD) rats were randomly divided into the following groups using the random number method: Sham operation (Sham) group, myocardial I/R injury model group (model group), empty lentivirus group, lncRNA-UCA1 upregulation group, miR-143 downregulation group, and lncRNA-UCA1 upregulation+miR-143 upregulation group, with 9 rats in each group. The rat model of myocardial I/R injury induced by CPB was established by thoracotomy aortic ligation under cardiopulmonary bypass support; in the Sham group, only threading was performed without ligation, and other procedures were the same. Seventy-two hours before modeling, the lncRNA-UCA1 upregulated group was injected with 100 μL of myocardial tissue-specific adeno-associated virus (AAV) overexpression vector of lncRNA-UCA1 via tail vein, the miR-143 downregulated group was injected with 100 μL of AAV short hairpin RNA (shRNA) vector of miR-143 via tail vein, the lncRNA-UCA1 upregulation+miR-143 upregulation group was injected with 100 μL of myocardial tissue-AAV overexpression vector of lncRNA-UCA1 and 100 μL of AAV overexpression vector of miR-143 via tail vein, and the empty vector lentivirus group was injected with 100 μL of AAV empty vector (virus titers were 1×109 TU/mL); the Sham group and the model group were injected with equal amounts of normal saline. The animals were euthanized 24 hours after intervention and cardiac tissue specimens were collected. After hematoxylin eosin (HE) staining, the damage of myocardial cells and the changes of muscle fiber tissue were observed under a light microscope; after dual staining with uranyl acetate and lead citrate, the ultrastructural damage of heart tissue was observed under a transmission electron microscopy; the expression of lncRNA-UCA1, miR-143, and Notch1 mRNA in myocardial tissue was detected by real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-PCR); the expression of microtubule 1 light chain 3-II/I (LC3-II/I) and Notch1 protein in myocardial tissue was detected by Western blotting.
Results: Compared with the Sham group, the myocardial cells of rats in the model group were enlarged, the intercellular space increased, autophagosomes increased, the arrangement of myocardial fibers was disordered, mitochondrial proliferated and deformed. The expression levels of lncRNA-UCA1 and Notch1 mRNA, as well as the protein expression levels of LC3-II/I and Notch1 were significantly increased, while the expression level of miR-143 was significantly decreased. Compared with the model group, the degree of myocardial cell injury in the lncRNA-UCA1 upregulation group and miR-143 downregulation group was significantly alleviated, the expression levels of Notch1 mRNA, LC3-II/I, and Notch1 protein were significantly increased [Notch1 mRNA (2-ΔΔCt): 2.66±0.24, 2.03±0.23 vs. 1.45±0.13, LC3-II/I: 2.10±0.21, 1.92±0.19 vs. 1.39±0.14, Notch1 protein (Notch1/GAPDH): 1.72±0.16, 1.57±0.16 vs. 1.34±0.13, all P < 0.05], and the expression level of miR-143 was significantly decreased (2-ΔΔCt: 0.50±0.06, 0.52±0.06 vs.0.71±0.06, P < 0.05). The expression level of lncRNA-UCA1 in the lncRNA-UCA1 upregulated group was significantly higher than that in the model group (2-ΔΔCt: 2.47±0.22 vs. 1.43±0.14, P < 0.05), while there was no significant difference in the miR-143 downregulation group compared with the model group (2-ΔΔCt: 1.50±0.16 vs. 1.43±0.14, P > 0.05). There was no significant difference in the degree of myocardial cell injury in the empty load lentivirus group and the lncRNA-UCA1 upregulation+miR-143 upregulation group compared to the model group. There were no significant differences in the expression of miR-143, Notch1 mRNA, and the autophagy level in these two groups compared to the model group. The expression level of lncRNA-UCA1 in the lncRNA-UCA1 upregulation+miR-143 upregulation group was significantly higher than that in the model group (2-ΔΔCt: 2.47±0.20 vs. 1.43±0.14, P < 0.05).
Conclusions: Autophagy is involved in the pathological process of myocardial I/R injury induced by CPB. The lncRNA-UCA1-microRNA-143-Notch1 axis may regulate the autophagy level to participate in the I/R injury process.