NLRP3 inflammasome impairs fracture repair in Rheumatoid arthritis through RhoA/Rac1-IL1β axis-mediated suppression of osteoblast differentiation.

IF 5.9 1区 医学 Q1 ORTHOPEDICS
Journal of Orthopaedic Translation Pub Date : 2025-08-09 eCollection Date: 2025-09-01 DOI:10.1016/j.jot.2025.07.012
Fen Miao, Hanjia Cai, Yue Chen, Ziwei Yan, Ruofan Jin, Yueming Dai, Lu Li, Hua Wang, Yan Xu, Wen Sun
{"title":"NLRP3 inflammasome impairs fracture repair in Rheumatoid arthritis through RhoA/Rac1-IL1β axis-mediated suppression of osteoblast differentiation.","authors":"Fen Miao, Hanjia Cai, Yue Chen, Ziwei Yan, Ruofan Jin, Yueming Dai, Lu Li, Hua Wang, Yan Xu, Wen Sun","doi":"10.1016/j.jot.2025.07.012","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Rheumatoid arthritis (RA) is often characterized by bone loss and fragility fractures and is a frequent comorbidity. The NLRP3 inflammasome drives inflammatory processes that fundamentally accompany the pathogenesis of RA. However, the role of NLRP3 inflammasome in RA fracture healing remains unclear.</p><p><strong>Methods: </strong>For <i>in vivo</i> analyses, we established tibial fractures in two murine RA models: TNF-transgenic (TNF<sup>Tg</sup>) mice and collagen-induced arthritis (CIA). To address the contribution of NLRP3 inflammasome to fracture repair, we generated TNF<sup>Tg</sup>; NLRP3<sup>KO</sup> mice by deleting the NLRP3 gene in TNF<sup>Tg</sup> mice. The effects of TNFα overexpression on osteogenic differentiation were assessed using mesenchymal progenitor cells (MPCs) with or without MCC950. The role of MCC950 in RA fracture repair was investigated using CIA mice.</p><p><strong>Results: </strong>TNF<sup>Tg</sup> mice exhibited delayed fracture healing, characterized by decreased callus bone volume and reduced bone mechanical strength. The NLRP3 inflammasome was excessively activated in TNF<sup>Tg</sup> mice, leading to elevated expression of NLRP3, pro-Caspase-1, Caspase-1 p20, pro-IL-1β and IL-1β. Moreover, NLRP3 deficiency in TNF<sup>Tg</sup> mice significantly mitigated the delayed fracture healing. Mechanistically, TNFα overexpression suppressed osteogenic differentiation of MPCs through NLRP3 inflammasome activation. This process involves RhoA/Rac1-dependent NF-κB signaling that triggers inflammasome assembly, ultimately leading to IL-1β secretion. Notably, MCC950 administration significantly attenuated these pathological effects. Lastly, <i>in vivo</i> MCC950 treatment rescued the delayed fracture healing by reducing NLRP3 inflammasome activation and promoting bone formation in CIA mice.</p><p><strong>Conclusions: </strong>Collectively, these findings suggest that NLRP3 inflammasome activation drives impaired fracture healing in RA through RhoA/Rac1‒IL-1β axis-mediated suppression of osteoblast differentiation, and pharmacologic inhibition with MCC950 effectively rescues delayed fracture healing in RA mouse model.</p><p><strong>The translational potential of this article: </strong>This study provides novel insights into the mechanisms underlying delayed fracture healing in RA and highlights the potential therapeutic benefits of targeting the NLRP3 inflammasome.</p>","PeriodicalId":16636,"journal":{"name":"Journal of Orthopaedic Translation","volume":"54 ","pages":"152-166"},"PeriodicalIF":5.9000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357271/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Translation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jot.2025.07.012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Rheumatoid arthritis (RA) is often characterized by bone loss and fragility fractures and is a frequent comorbidity. The NLRP3 inflammasome drives inflammatory processes that fundamentally accompany the pathogenesis of RA. However, the role of NLRP3 inflammasome in RA fracture healing remains unclear.

Methods: For in vivo analyses, we established tibial fractures in two murine RA models: TNF-transgenic (TNFTg) mice and collagen-induced arthritis (CIA). To address the contribution of NLRP3 inflammasome to fracture repair, we generated TNFTg; NLRP3KO mice by deleting the NLRP3 gene in TNFTg mice. The effects of TNFα overexpression on osteogenic differentiation were assessed using mesenchymal progenitor cells (MPCs) with or without MCC950. The role of MCC950 in RA fracture repair was investigated using CIA mice.

Results: TNFTg mice exhibited delayed fracture healing, characterized by decreased callus bone volume and reduced bone mechanical strength. The NLRP3 inflammasome was excessively activated in TNFTg mice, leading to elevated expression of NLRP3, pro-Caspase-1, Caspase-1 p20, pro-IL-1β and IL-1β. Moreover, NLRP3 deficiency in TNFTg mice significantly mitigated the delayed fracture healing. Mechanistically, TNFα overexpression suppressed osteogenic differentiation of MPCs through NLRP3 inflammasome activation. This process involves RhoA/Rac1-dependent NF-κB signaling that triggers inflammasome assembly, ultimately leading to IL-1β secretion. Notably, MCC950 administration significantly attenuated these pathological effects. Lastly, in vivo MCC950 treatment rescued the delayed fracture healing by reducing NLRP3 inflammasome activation and promoting bone formation in CIA mice.

Conclusions: Collectively, these findings suggest that NLRP3 inflammasome activation drives impaired fracture healing in RA through RhoA/Rac1‒IL-1β axis-mediated suppression of osteoblast differentiation, and pharmacologic inhibition with MCC950 effectively rescues delayed fracture healing in RA mouse model.

The translational potential of this article: This study provides novel insights into the mechanisms underlying delayed fracture healing in RA and highlights the potential therapeutic benefits of targeting the NLRP3 inflammasome.

NLRP3炎性体通过RhoA/ rac1 - il - β轴介导的成骨细胞分化抑制损害类风湿关节炎骨折修复。
目的:类风湿性关节炎(RA)通常以骨质流失和脆性骨折为特征,是一种常见的合并症。NLRP3炎性小体驱动炎症过程,从根本上伴随RA的发病机制。然而,NLRP3炎性体在类风湿性关节炎骨折愈合中的作用尚不清楚。方法:采用tnf转基因(TNFTg)小鼠和胶原诱导关节炎(CIA)小鼠两种RA模型建立胫骨骨折模型进行体内分析。为了解决NLRP3炎性体对骨折修复的贡献,我们生成了TNFTg;NLRP3KO小鼠通过在TNFTg小鼠中删除NLRP3基因。利用含或不含MCC950的间充质祖细胞(MPCs)评估tnf - α过表达对成骨分化的影响。用CIA小鼠研究MCC950在RA骨折修复中的作用。结果:TNFTg小鼠骨折愈合延迟,表现为骨痂体积减小,骨机械强度降低。NLRP3炎性体在TNFTg小鼠中过度激活,导致NLRP3、pro-Caspase-1、Caspase-1 p20、pro-IL-1β和IL-1β的表达升高。此外,TNFTg小鼠NLRP3缺失显著减轻了骨折愈合延迟。机制上,TNFα过表达通过NLRP3炎性体激活抑制MPCs的成骨分化。这一过程涉及RhoA/ rac1依赖的NF-κB信号,该信号触发炎性小体组装,最终导致IL-1β分泌。值得注意的是,MCC950显著减轻了这些病理效应。最后,体内MCC950治疗通过降低NLRP3炎性体激活和促进CIA小鼠骨形成来挽救延迟骨折愈合。结论:综上所述,这些发现表明NLRP3炎性体激活通过RhoA/ Rac1-IL-1β轴介导的成骨细胞分化抑制驱动RA骨折愈合受损,MCC950的药物抑制有效地挽救了RA小鼠模型的延迟骨折愈合。本文的翻译潜力:该研究为RA延迟骨折愈合的机制提供了新的见解,并强调了靶向NLRP3炎性体的潜在治疗益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Orthopaedic Translation
Journal of Orthopaedic Translation Medicine-Orthopedics and Sports Medicine
CiteScore
11.80
自引率
13.60%
发文量
91
审稿时长
29 days
期刊介绍: The Journal of Orthopaedic Translation (JOT) is the official peer-reviewed, open access journal of the Chinese Speaking Orthopaedic Society (CSOS) and the International Chinese Musculoskeletal Research Society (ICMRS). It is published quarterly, in January, April, July and October, by Elsevier.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信