Mirjam Bonanno, Augusto Ielo, Paolo De Pasquale, Antonio Celesti, Alessandro Marco De Nunzio, Angelo Quartarone, Rocco Salvatore Calabrò
{"title":"Use of Wearable Sensors to Assess Fall Risk in Neurological Disorders: Systematic Review.","authors":"Mirjam Bonanno, Augusto Ielo, Paolo De Pasquale, Antonio Celesti, Alessandro Marco De Nunzio, Angelo Quartarone, Rocco Salvatore Calabrò","doi":"10.2196/67265","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Assessing fall risk, especially in individuals with neurological disorders, is essential to prevent hospitalization, hypomobility, and reduced functional independence. Wearable sensors are increasingly used in neurorehabilitation, as they enable unsupervised fall risk assessment by providing continuous monitoring during daily functional tasks, thereby offering a reflection of the individual's real-world fall risk.</p><p><strong>Objective: </strong>We systematically reviewed the literature on reliable biomechanical gait parameters detected with wearable sensors to assess fall risk in neurological disorders, focusing on patients with Parkinson disease, multiple sclerosis, stroke, or Alzheimer disease. In addition, we examined the latest advancements in wearable sensor technology, including best practices for device placement as well as data processing and analysis.</p><p><strong>Methods: </strong>We conducted a comprehensive systematic search for relevant peer-reviewed articles published up to April 18, 2025, using PubMed, Web of Science, Embase, and IEEE Xplore, which are the most used databases in the fields of health and bioengineering.</p><p><strong>Results: </strong>The 19 included studies involved 2630 patients with neurological disorders, including 226 (8.59%) with multiple sclerosis (n=7, 37% studies), 2305 (87.64%) with Parkinson disease (n=8, 53% studies), 51 (1.94%) with stroke (n=3, 16% studies), and 48 (1.83%) with Alzheimer disease or cognitive impairment (n=1, 5% study).</p><p><strong>Conclusions: </strong>This review highlights the role of wearable technologies in assessing fall risk in patients with neurological disorders. Although the included studies showed variation in methods and a focus on technology over clinical context, the lack of standardization reflects ongoing advancements, which may be seen as a strength.</p><p><strong>Trial registration: </strong>PROSPERO CRD42023463944; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023463944.</p>","PeriodicalId":14756,"journal":{"name":"JMIR mHealth and uHealth","volume":"13 ","pages":"e67265"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12402735/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR mHealth and uHealth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/67265","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Assessing fall risk, especially in individuals with neurological disorders, is essential to prevent hospitalization, hypomobility, and reduced functional independence. Wearable sensors are increasingly used in neurorehabilitation, as they enable unsupervised fall risk assessment by providing continuous monitoring during daily functional tasks, thereby offering a reflection of the individual's real-world fall risk.
Objective: We systematically reviewed the literature on reliable biomechanical gait parameters detected with wearable sensors to assess fall risk in neurological disorders, focusing on patients with Parkinson disease, multiple sclerosis, stroke, or Alzheimer disease. In addition, we examined the latest advancements in wearable sensor technology, including best practices for device placement as well as data processing and analysis.
Methods: We conducted a comprehensive systematic search for relevant peer-reviewed articles published up to April 18, 2025, using PubMed, Web of Science, Embase, and IEEE Xplore, which are the most used databases in the fields of health and bioengineering.
Results: The 19 included studies involved 2630 patients with neurological disorders, including 226 (8.59%) with multiple sclerosis (n=7, 37% studies), 2305 (87.64%) with Parkinson disease (n=8, 53% studies), 51 (1.94%) with stroke (n=3, 16% studies), and 48 (1.83%) with Alzheimer disease or cognitive impairment (n=1, 5% study).
Conclusions: This review highlights the role of wearable technologies in assessing fall risk in patients with neurological disorders. Although the included studies showed variation in methods and a focus on technology over clinical context, the lack of standardization reflects ongoing advancements, which may be seen as a strength.
期刊介绍:
JMIR mHealth and uHealth (JMU, ISSN 2291-5222) is a spin-off journal of JMIR, the leading eHealth journal (Impact Factor 2016: 5.175). JMIR mHealth and uHealth is indexed in PubMed, PubMed Central, and Science Citation Index Expanded (SCIE), and in June 2017 received a stunning inaugural Impact Factor of 4.636.
The journal focusses on health and biomedical applications in mobile and tablet computing, pervasive and ubiquitous computing, wearable computing and domotics.
JMIR mHealth and uHealth publishes since 2013 and was the first mhealth journal in Pubmed. It publishes even faster and has a broader scope with including papers which are more technical or more formative/developmental than what would be published in the Journal of Medical Internet Research.