pyCAST, a Python package for the detection of cavities on surface proteins.

IF 4.1 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Computational and structural biotechnology journal Pub Date : 2025-08-11 eCollection Date: 2025-01-01 DOI:10.1016/j.csbj.2025.07.054
Giorgio Luciano, Ulderico Fugacci, Silvia Biasotti
{"title":"pyCAST, a Python package for the detection of cavities on surface proteins.","authors":"Giorgio Luciano, Ulderico Fugacci, Silvia Biasotti","doi":"10.1016/j.csbj.2025.07.054","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying enzymatic activity sites, signal transduction pathways, and binding sites is crucial in biochemical research, prompting various methodologies. This study introduces pyCAST, a Python package designed to detect cavities on protein surfaces using the CAST methodology, a widely recognized approach for cavity identification. The paper describes the principle of the CAST methods and presents our implementation, including the results achieved over benchmark data sets. Furthermore, it discusses the limitations of the technique and potential future improvements. pyCAST is user-friendly, modular, adaptable to diverse applications, and openly available under the MIT license.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3589-3597"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.07.054","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying enzymatic activity sites, signal transduction pathways, and binding sites is crucial in biochemical research, prompting various methodologies. This study introduces pyCAST, a Python package designed to detect cavities on protein surfaces using the CAST methodology, a widely recognized approach for cavity identification. The paper describes the principle of the CAST methods and presents our implementation, including the results achieved over benchmark data sets. Furthermore, it discusses the limitations of the technique and potential future improvements. pyCAST is user-friendly, modular, adaptable to diverse applications, and openly available under the MIT license.

pyCAST,一个Python包,用于检测表面蛋白质上的空腔。
确定酶活性位点、信号转导途径和结合位点在生化研究中至关重要,促使了各种方法的产生。本研究介绍了pyCAST,一个Python包,旨在使用CAST方法检测蛋白质表面的空腔,这是一种广泛认可的空腔识别方法。本文描述了CAST方法的原理,并介绍了我们的实现,包括在基准数据集上取得的结果。此外,它还讨论了该技术的局限性和潜在的未来改进。pyCAST是用户友好的、模块化的、适用于各种应用程序的,并且在MIT许可下公开可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信