Joshua Chung , Nathan Isles , Stuart Johnston , David J. Collins , Julie R. McMullen , H. Llewelyn Roderick , Vijay Rajagopal
{"title":"Calcium-dependent regulation of physiological vs pathological cardiomyocyte hypertrophy","authors":"Joshua Chung , Nathan Isles , Stuart Johnston , David J. Collins , Julie R. McMullen , H. Llewelyn Roderick , Vijay Rajagopal","doi":"10.1016/j.bbamcr.2025.120046","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiomyocyte hypertrophic growth contributes to the adaptative response of the heart to meet sustained increases in hemodynamic demand. While hypertrophic responses to physiological cues maintains or enhances cardiac function, when triggered by pathological cues, this response is maladaptive, associated with compromised heart function, although initially, this response maybe adaptive with preserved function. Since cues and activated pathways associated with both forms of hypertrophy overlap, the question arises as to the mechanism that determines these different outcomes. Here we evaluate the hypothesis that cardiomyocyte Ca<sup>2+</sup> signalling – a regulator of pathological hypertrophy – also signals physiological hypertrophy. We discuss how different Ca<sup>2+</sup> profiles, in distinct subcellular organelles/microdomains, and interacting with other signalling pathways, provide a mechanism for Ca<sup>2+</sup> to be decoded to induce distinct hypertrophic phenotypes. We discuss how integration of computational with rich structural and functional cellular measurements can be used to decipher the role of Ca<sup>2+</sup> in hypertrophic gene programming.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 8","pages":"Article 120046"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016748892500151X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiomyocyte hypertrophic growth contributes to the adaptative response of the heart to meet sustained increases in hemodynamic demand. While hypertrophic responses to physiological cues maintains or enhances cardiac function, when triggered by pathological cues, this response is maladaptive, associated with compromised heart function, although initially, this response maybe adaptive with preserved function. Since cues and activated pathways associated with both forms of hypertrophy overlap, the question arises as to the mechanism that determines these different outcomes. Here we evaluate the hypothesis that cardiomyocyte Ca2+ signalling – a regulator of pathological hypertrophy – also signals physiological hypertrophy. We discuss how different Ca2+ profiles, in distinct subcellular organelles/microdomains, and interacting with other signalling pathways, provide a mechanism for Ca2+ to be decoded to induce distinct hypertrophic phenotypes. We discuss how integration of computational with rich structural and functional cellular measurements can be used to decipher the role of Ca2+ in hypertrophic gene programming.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.