Mechanistic blockade of Pseudomonas aeruginosa type III secretion by a monoclonal antibody targeting the pore size-determining domain of PcrV.

IF 4.5 2区 医学 Q2 MICROBIOLOGY
Antimicrobial Agents and Chemotherapy Pub Date : 2025-10-01 Epub Date: 2025-08-18 DOI:10.1128/aac.00405-25
Yu Zhang, Shiyu Guo, Liwen Jiang, Siqi Wang, Weitong Hou, Xiran Qiu, Hui Shen, Maomao An
{"title":"Mechanistic blockade of <i>Pseudomonas aeruginosa</i> type III secretion by a monoclonal antibody targeting the pore size-determining domain of PcrV.","authors":"Yu Zhang, Shiyu Guo, Liwen Jiang, Siqi Wang, Weitong Hou, Xiran Qiu, Hui Shen, Maomao An","doi":"10.1128/aac.00405-25","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pseudomonas aeruginosa</i> bloodstream infections carry mortality rates exceeding 60%, with escalating antibiotic resistance dramatically limiting therapeutic options. The type III secretion system (T3SS), a virulence apparatus delivering cytotoxic effectors via PcrV-dependent translocation pores, represents a therapeutic target. Here, we developed a monoclonal antibody (5C8) targeting the central domain (H106-D173) of PcrV, which regulates translocation pore size. 5C8 demonstrated sub-nanomolar affinity (KD = 0.32 nM) via biolayer interferometry and broad neutralization efficacy against clinical isolates (IC<sub>50</sub>: 0.32-1.47 μg/mL). In murine bloodstream infection models, 5C8 conferred improved survival against cytotoxic (<i>exoU<sup>+</sup></i>) and invasive (<i>exoS<sup>+</sup></i>) strains (<i>P</i> < 0.01 vs controls), reducing bacterial loads in lungs/kidneys by 1.5-log<sub>10</sub> colony-forming unit (<i>P</i> < 0.01) and suppressing interleukin-6 levels by 60-82% (<i>P</i> < 0.01). Mechanistic studies revealed 5C8's dual action: blocking effector release (ExoU/ExoT reduced by 41-88% via liquid chromatography-mass spectrometry) and constricting T3SS pores below 1.2 nm (carbohydrate exclusion assay). Molecular docking identified D125/K129/Y145 as critical binding residues, validated by alanine scanning and mutant construction. Humanized Hu5C8 retained potency (KD = 0.55 nM) with extended half-life (t<sub>1/2</sub> = 91.26 h) through Fc receptor engineering. As an inhibitor targeting the pore size-determining domain of PcrV, 5C8 disrupts virulence through a novel dual mechanism, providing a paradigm-shifting strategy against multidrug-resistant <i>P. aeruginosa</i>, bridging a critical gap in sepsis management.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0040525"},"PeriodicalIF":4.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.00405-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pseudomonas aeruginosa bloodstream infections carry mortality rates exceeding 60%, with escalating antibiotic resistance dramatically limiting therapeutic options. The type III secretion system (T3SS), a virulence apparatus delivering cytotoxic effectors via PcrV-dependent translocation pores, represents a therapeutic target. Here, we developed a monoclonal antibody (5C8) targeting the central domain (H106-D173) of PcrV, which regulates translocation pore size. 5C8 demonstrated sub-nanomolar affinity (KD = 0.32 nM) via biolayer interferometry and broad neutralization efficacy against clinical isolates (IC50: 0.32-1.47 μg/mL). In murine bloodstream infection models, 5C8 conferred improved survival against cytotoxic (exoU+) and invasive (exoS+) strains (P < 0.01 vs controls), reducing bacterial loads in lungs/kidneys by 1.5-log10 colony-forming unit (P < 0.01) and suppressing interleukin-6 levels by 60-82% (P < 0.01). Mechanistic studies revealed 5C8's dual action: blocking effector release (ExoU/ExoT reduced by 41-88% via liquid chromatography-mass spectrometry) and constricting T3SS pores below 1.2 nm (carbohydrate exclusion assay). Molecular docking identified D125/K129/Y145 as critical binding residues, validated by alanine scanning and mutant construction. Humanized Hu5C8 retained potency (KD = 0.55 nM) with extended half-life (t1/2 = 91.26 h) through Fc receptor engineering. As an inhibitor targeting the pore size-determining domain of PcrV, 5C8 disrupts virulence through a novel dual mechanism, providing a paradigm-shifting strategy against multidrug-resistant P. aeruginosa, bridging a critical gap in sepsis management.

针对PcrV孔径决定域的单克隆抗体对铜绿假单胞菌III型分泌的机制阻断
铜绿假单胞菌血液感染的死亡率超过60%,抗生素耐药性的不断升级极大地限制了治疗选择。III型分泌系统(T3SS)是一种毒力装置,通过pcrv依赖性易位孔传递细胞毒性效应物,是一种治疗靶点。在这里,我们开发了一种针对PcrV中心结构域(H106-D173)的单克隆抗体(5C8),该结构域调节易位孔径。5C8对临床分离菌具有亚纳摩尔亲和力(KD = 0.32 nM)和广泛的中和作用(IC50: 0.32 ~ 1.47 μg/mL)。在小鼠血流感染模型中,5C8提高了抗细胞毒性(exoU+)和侵袭性(exoS+)菌株的存活率(与对照组相比P < 0.01),使肺/肾脏细菌负荷减少1.5 log10集落形成单位(P < 0.01),并使白细胞介素-6水平降低60-82% (P < 0.01)。机制研究表明5C8具有双重作用:阻断效应释放(通过液相色谱-质谱分析,ExoU/ExoT减少41-88%)和收缩T3SS气孔(碳水化合物排除试验)至1.2 nm以下。分子对接发现D125/K129/Y145为关键结合残基,通过丙氨酸扫描和突变体构建验证。通过Fc受体工程,人源化Hu5C8的效价KD = 0.55 nM,半衰期延长(t1/2 = 91.26 h)。作为一种靶向PcrV孔径决定域的抑制剂,5C8通过一种新的双重机制破坏毒力,为耐多药铜绿假单胞菌提供了一种范式转换策略,填补了脓毒症治疗的关键空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
8.20%
发文量
762
审稿时长
3 months
期刊介绍: Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信