Sijia Cao, Pouya Partovi-Azar, Jin Yang, Dongjiu Xie, Timo Held, Gianluca Marcozzi, Joseph E. McPeak, Wei Zhang, Xia Zhang, Markus Osenberg, Zdravko Kochovski, Changxia Li, Daniel Sebastiani, Johannes Schmidt, Moritz Exner, Ingo Manke, Arne Thomas*, Wenxi Wang* and Yan Lu*,
{"title":"A Radical-Cationic Covalent Organic Framework to Accelerate Polysulfide Conversion for Long-Durable Lithium–Sulfur Batteries","authors":"Sijia Cao, Pouya Partovi-Azar, Jin Yang, Dongjiu Xie, Timo Held, Gianluca Marcozzi, Joseph E. McPeak, Wei Zhang, Xia Zhang, Markus Osenberg, Zdravko Kochovski, Changxia Li, Daniel Sebastiani, Johannes Schmidt, Moritz Exner, Ingo Manke, Arne Thomas*, Wenxi Wang* and Yan Lu*, ","doi":"10.1021/jacs.5c09421","DOIUrl":null,"url":null,"abstract":"<p >Covalent organic frameworks (COFs) have emerged as promising metal-free sulfur hosts to facilitate the conversion kinetics and suppress the shuttling effect of lithium polysulfides (LiPSs) in lithium–sulfur (Li–S) batteries. However, constructing COFs with stable and high electrocatalytic functionality for LiPS conversion remains unexplored. Herein, we develop a radical-cationic COF (R-TTF<sup>•+</sup>-COF) with superior electrical conductivity of 3.9 S m<sup>–1</sup> at room temperature, which features both nucleophilic and electrophilic sites for effective LiPS chemisorption and conversion. With this novel radical-based catalyst, the Li–S battery achieves superior longevity of 1500 cycles with a capacity fading of 0.027% per cycle at a current density of 0.5 C. The capacity retention of the Li–S battery based on R-TTF<sup>•+</sup>-COF at the current density of 2.0 C is nearly twice as high compared to a COF without radicals. The crucial role of radical cations in catalyzing LiPS conversion has been systematically elucidated through solid-state nuclear magnetic resonance spectroscopy, electron paramagnetic resonance spectroscopy, and theoretical simulations, which verify the reversible interactions between LiPSs and [TTF]<sub>2</sub><sup>•+</sup> moieties. This intriguing radical-assisted mechanism opens a new avenue for designing efficient catalytic sulfur hosts using organic molecules, offering a significant step toward the practical application of Li–S batteries.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 34","pages":"31073–31084"},"PeriodicalIF":15.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/jacs.5c09421","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c09421","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic frameworks (COFs) have emerged as promising metal-free sulfur hosts to facilitate the conversion kinetics and suppress the shuttling effect of lithium polysulfides (LiPSs) in lithium–sulfur (Li–S) batteries. However, constructing COFs with stable and high electrocatalytic functionality for LiPS conversion remains unexplored. Herein, we develop a radical-cationic COF (R-TTF•+-COF) with superior electrical conductivity of 3.9 S m–1 at room temperature, which features both nucleophilic and electrophilic sites for effective LiPS chemisorption and conversion. With this novel radical-based catalyst, the Li–S battery achieves superior longevity of 1500 cycles with a capacity fading of 0.027% per cycle at a current density of 0.5 C. The capacity retention of the Li–S battery based on R-TTF•+-COF at the current density of 2.0 C is nearly twice as high compared to a COF without radicals. The crucial role of radical cations in catalyzing LiPS conversion has been systematically elucidated through solid-state nuclear magnetic resonance spectroscopy, electron paramagnetic resonance spectroscopy, and theoretical simulations, which verify the reversible interactions between LiPSs and [TTF]2•+ moieties. This intriguing radical-assisted mechanism opens a new avenue for designing efficient catalytic sulfur hosts using organic molecules, offering a significant step toward the practical application of Li–S batteries.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.