Silvio Uhlig*, Kristian So̷rnes, Evangeliia Mineeva, Frode Rise, Lene Grutle, Else Morisbak, Jan Tore Samuelsen, Hilde M. Kopperud and Hanne Ro̷berg-Larsen,
{"title":"Nucleophilic Addition of Thiols to Methacrylates for Biomedical Applications Revisited","authors":"Silvio Uhlig*, Kristian So̷rnes, Evangeliia Mineeva, Frode Rise, Lene Grutle, Else Morisbak, Jan Tore Samuelsen, Hilde M. Kopperud and Hanne Ro̷berg-Larsen, ","doi":"10.1021/acs.chemrestox.5c00179","DOIUrl":null,"url":null,"abstract":"<p >Composites are popular materials for, among others, restorative dentistry because of their favorable mechanical and esthetic properties and direct-filling applications. The raw materials for such composites usually consist of filler particles embedded in a matrix of dimethacrylate monomers that are polymerized <i>in situ</i>. Because the raw materials cannot polymerize completely, residual monomers leach out over time. The conjugation of methacrylates with sulfur compounds has been recognized as an important reaction as well as a detoxification pathway; thus, leached monomers are expected to undergo chemical reactions with various biomolecules that contain thiol functionalities. To understand the reaction of dental methacrylate monomers with thiols, we studied the reaction of 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate, urethane dimethacrylate, and bisphenol A diglycidyl methacrylate with the model thiol 2-mercaptoethanol using liquid chromatography coupled to low- and high-resolution mass spectrometry (LC–MS and LC–HRMS). The results indicate that thiols react readily with the conjugated double bond, and with methacrylate half-lives of 7–21 h under pseudo-first-order reaction conditions and at neutral pH. Dimethacrylates first formed a monoaddition product, while thiol addition to the second acrylate moiety was observed on a longer time scale. The reaction of HEMA with <span>l</span>-cysteine and <span>l</span>-glutathione was studied in more detail using HRMS and NMR spectroscopy. The reaction rates were substantially higher than for the reaction with mercaptoethanol, and NMR analysis revealed the presence of two isomeric reaction products. Structural characterization also included the identification and assignment of sulfoxides of HEMA-cysteine and HEMA-glutathione. Using the characterized HEMA–thiols as reference standards for LC–HRMS, we demonstrated the presence of HEMA-glutathione, HEMA-cysteine, their sulfoxides, and a putative HEMA-cysteinylglycine in a human osteoblast-like cell line following exposure to HEMA.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"38 9","pages":"1535–1547"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.5c00179","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Composites are popular materials for, among others, restorative dentistry because of their favorable mechanical and esthetic properties and direct-filling applications. The raw materials for such composites usually consist of filler particles embedded in a matrix of dimethacrylate monomers that are polymerized in situ. Because the raw materials cannot polymerize completely, residual monomers leach out over time. The conjugation of methacrylates with sulfur compounds has been recognized as an important reaction as well as a detoxification pathway; thus, leached monomers are expected to undergo chemical reactions with various biomolecules that contain thiol functionalities. To understand the reaction of dental methacrylate monomers with thiols, we studied the reaction of 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate, urethane dimethacrylate, and bisphenol A diglycidyl methacrylate with the model thiol 2-mercaptoethanol using liquid chromatography coupled to low- and high-resolution mass spectrometry (LC–MS and LC–HRMS). The results indicate that thiols react readily with the conjugated double bond, and with methacrylate half-lives of 7–21 h under pseudo-first-order reaction conditions and at neutral pH. Dimethacrylates first formed a monoaddition product, while thiol addition to the second acrylate moiety was observed on a longer time scale. The reaction of HEMA with l-cysteine and l-glutathione was studied in more detail using HRMS and NMR spectroscopy. The reaction rates were substantially higher than for the reaction with mercaptoethanol, and NMR analysis revealed the presence of two isomeric reaction products. Structural characterization also included the identification and assignment of sulfoxides of HEMA-cysteine and HEMA-glutathione. Using the characterized HEMA–thiols as reference standards for LC–HRMS, we demonstrated the presence of HEMA-glutathione, HEMA-cysteine, their sulfoxides, and a putative HEMA-cysteinylglycine in a human osteoblast-like cell line following exposure to HEMA.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.