{"title":"Photoinduced Electron Donor–Acceptor Complex-Enabled Transformations Involving Boron-Containing Compounds","authors":"Jianzhong Lu, Huayong Zhang, Guozhu Zhang, Rui Guo","doi":"10.1002/cptc.202500018","DOIUrl":null,"url":null,"abstract":"<p>Over the past decades, visible-light-driven reactions have emerged as a powerful tool in organic synthesis. Unlike traditional photoredox reactions that require additional catalysts or photosensitizers, electron donor–acceptor (EDA) complex-mediated photochemistry offers a simpler and more cost-effective approach to achieving diverse radical transformations without the need for noble catalysts. Among these, the use of boron-containing compounds as electron donors or acceptors in EDA complexes has garnered significant attention due to their unique properties. This review highlights recent advances in visible-light-induced EDA complex-mediated transformations involving boron-containing compounds, focusing on their applications in constructing C<span></span>C and C<span></span>B bonds and elucidating the underlying reaction mechanisms.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500018","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decades, visible-light-driven reactions have emerged as a powerful tool in organic synthesis. Unlike traditional photoredox reactions that require additional catalysts or photosensitizers, electron donor–acceptor (EDA) complex-mediated photochemistry offers a simpler and more cost-effective approach to achieving diverse radical transformations without the need for noble catalysts. Among these, the use of boron-containing compounds as electron donors or acceptors in EDA complexes has garnered significant attention due to their unique properties. This review highlights recent advances in visible-light-induced EDA complex-mediated transformations involving boron-containing compounds, focusing on their applications in constructing CC and CB bonds and elucidating the underlying reaction mechanisms.
ChemPhotoChemChemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍:
Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science.
We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.