{"title":"Operational Machine Learning Post-Processing of Short-Range Temperature, Humidity, Wind Speed and Gust Forecasts","authors":"Leila Hieta, Mikko Partio","doi":"10.1002/met.70074","DOIUrl":null,"url":null,"abstract":"<p>Statistical methods can be used to create bias correction models that learn from past forecast errors and reduce systematic errors in real-time forecasts. This study presents a machine learning (ML) approach using extreme gradient-boosted (XGBoost) trees to address biases in a numerical weather prediction (NWP) nowcast model for key meteorological parameters: 2-m temperature, 2-m relative humidity, 10-m wind speed, and 10-m wind gust. These ML models have been integrated into the Finnish Meteorological Institute's (FMI) operational nowcasting framework, Smartmet nowcast. Results show that, even with a relatively modest set of meteorological predictors, the ML bias correction method significantly improves forecast accuracy, reducing the root mean square error (RMSE) by 24%–29% compared to the direct NWP model output. The implementation of this new bias correction method not only improves the quality of FMI's short-range forecasts, but also extends the availability of bias-corrected data for longer forecast lead times, offering substantial improvements over the previously implemented bias correction method. The codebase for this machine learning bias correction is available at (https://github.com/fmidev/snwc_bc).</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"32 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/met.70074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://rmets.onlinelibrary.wiley.com/doi/10.1002/met.70074","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Statistical methods can be used to create bias correction models that learn from past forecast errors and reduce systematic errors in real-time forecasts. This study presents a machine learning (ML) approach using extreme gradient-boosted (XGBoost) trees to address biases in a numerical weather prediction (NWP) nowcast model for key meteorological parameters: 2-m temperature, 2-m relative humidity, 10-m wind speed, and 10-m wind gust. These ML models have been integrated into the Finnish Meteorological Institute's (FMI) operational nowcasting framework, Smartmet nowcast. Results show that, even with a relatively modest set of meteorological predictors, the ML bias correction method significantly improves forecast accuracy, reducing the root mean square error (RMSE) by 24%–29% compared to the direct NWP model output. The implementation of this new bias correction method not only improves the quality of FMI's short-range forecasts, but also extends the availability of bias-corrected data for longer forecast lead times, offering substantial improvements over the previously implemented bias correction method. The codebase for this machine learning bias correction is available at (https://github.com/fmidev/snwc_bc).
期刊介绍:
The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including:
applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits;
forecasting, warning and service delivery techniques and methods;
weather hazards, their analysis and prediction;
performance, verification and value of numerical models and forecasting services;
practical applications of ocean and climate models;
education and training.