Operational Machine Learning Post-Processing of Short-Range Temperature, Humidity, Wind Speed and Gust Forecasts

IF 2.5 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Leila Hieta, Mikko Partio
{"title":"Operational Machine Learning Post-Processing of Short-Range Temperature, Humidity, Wind Speed and Gust Forecasts","authors":"Leila Hieta,&nbsp;Mikko Partio","doi":"10.1002/met.70074","DOIUrl":null,"url":null,"abstract":"<p>Statistical methods can be used to create bias correction models that learn from past forecast errors and reduce systematic errors in real-time forecasts. This study presents a machine learning (ML) approach using extreme gradient-boosted (XGBoost) trees to address biases in a numerical weather prediction (NWP) nowcast model for key meteorological parameters: 2-m temperature, 2-m relative humidity, 10-m wind speed, and 10-m wind gust. These ML models have been integrated into the Finnish Meteorological Institute's (FMI) operational nowcasting framework, Smartmet nowcast. Results show that, even with a relatively modest set of meteorological predictors, the ML bias correction method significantly improves forecast accuracy, reducing the root mean square error (RMSE) by 24%–29% compared to the direct NWP model output. The implementation of this new bias correction method not only improves the quality of FMI's short-range forecasts, but also extends the availability of bias-corrected data for longer forecast lead times, offering substantial improvements over the previously implemented bias correction method. The codebase for this machine learning bias correction is available at (https://github.com/fmidev/snwc_bc).</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"32 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/met.70074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://rmets.onlinelibrary.wiley.com/doi/10.1002/met.70074","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Statistical methods can be used to create bias correction models that learn from past forecast errors and reduce systematic errors in real-time forecasts. This study presents a machine learning (ML) approach using extreme gradient-boosted (XGBoost) trees to address biases in a numerical weather prediction (NWP) nowcast model for key meteorological parameters: 2-m temperature, 2-m relative humidity, 10-m wind speed, and 10-m wind gust. These ML models have been integrated into the Finnish Meteorological Institute's (FMI) operational nowcasting framework, Smartmet nowcast. Results show that, even with a relatively modest set of meteorological predictors, the ML bias correction method significantly improves forecast accuracy, reducing the root mean square error (RMSE) by 24%–29% compared to the direct NWP model output. The implementation of this new bias correction method not only improves the quality of FMI's short-range forecasts, but also extends the availability of bias-corrected data for longer forecast lead times, offering substantial improvements over the previously implemented bias correction method. The codebase for this machine learning bias correction is available at (https://github.com/fmidev/snwc_bc).

Abstract Image

Abstract Image

Abstract Image

短期温度、湿度、风速和阵风预报的操作机器学习后处理
统计方法可以用来建立偏差校正模型,从过去的预测误差中学习,减少实时预测中的系统误差。本研究提出了一种机器学习(ML)方法,使用极端梯度增强(XGBoost)树来解决数值天气预报(NWP)临近预报模型中关键气象参数的偏差:2米温度、2米相对湿度、10米风速和10米阵风。这些机器学习模型已经集成到芬兰气象研究所(FMI)的业务临近预报框架Smartmet临近预报中。结果表明,即使使用相对适度的气象预测因子集,ML偏差校正方法也显著提高了预测精度,与直接NWP模型输出相比,将均方根误差(RMSE)降低了24%-29%。这种新的偏差校正方法的实施不仅提高了FMI短期预测的质量,而且还扩展了偏差校正数据的可用性,使预测提前期更长,比以前实施的偏差校正方法有了实质性的改进。此机器学习偏差校正的代码库可在(https://github.com/fmidev/snwc_bc)获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信