Sebastian Günther, Gerhard Rein, Christopher Straub
{"title":"A Birman–Schwinger Principle in General Relativity: Linearly Stable Shells of Collisionless Matter Surrounding a Black Hole","authors":"Sebastian Günther, Gerhard Rein, Christopher Straub","doi":"10.1007/s00205-025-02123-x","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a Birman–Schwinger principle for the spherically symmetric, asymptotically flat Einstein–Vlasov system. The principle characterizes the stability properties of steady states such as the positive definiteness of an Antonov-type operator or the existence of exponentially growing modes in terms of a one-dimensional variational problem for a Hilbert–Schmidt operator. This requires a refined analysis of the operators arising from linearizing the system, which uses action-angle type variables. For the latter, a single-well structure of the effective potential for the particle flow of the steady state is required. This natural property can be verified for a broad class of singularity-free steady states. As a particular example for the application of our Birman–Schwinger principle we consider steady states where a Schwarzschild black hole is surrounded by a shell of Vlasov matter. We prove the existence of such steady states and derive linear stability if the mass of the Vlasov shell is small compared to the mass of the black hole.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02123-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02123-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a Birman–Schwinger principle for the spherically symmetric, asymptotically flat Einstein–Vlasov system. The principle characterizes the stability properties of steady states such as the positive definiteness of an Antonov-type operator or the existence of exponentially growing modes in terms of a one-dimensional variational problem for a Hilbert–Schmidt operator. This requires a refined analysis of the operators arising from linearizing the system, which uses action-angle type variables. For the latter, a single-well structure of the effective potential for the particle flow of the steady state is required. This natural property can be verified for a broad class of singularity-free steady states. As a particular example for the application of our Birman–Schwinger principle we consider steady states where a Schwarzschild black hole is surrounded by a shell of Vlasov matter. We prove the existence of such steady states and derive linear stability if the mass of the Vlasov shell is small compared to the mass of the black hole.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.