3D Printing of Unconventional Starches from Andean Tubers: Microstructural, Textural, and Rheological Properties

IF 3.2 4区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Luis Daniel Daza, Cristina Reche, Angélica Sandoval-Aldana, Henry Alexander Váquiro, Valeria Soledad Eim
{"title":"3D Printing of Unconventional Starches from Andean Tubers: Microstructural, Textural, and Rheological Properties","authors":"Luis Daniel Daza,&nbsp;Cristina Reche,&nbsp;Angélica Sandoval-Aldana,&nbsp;Henry Alexander Váquiro,&nbsp;Valeria Soledad Eim","doi":"10.1007/s11483-025-10016-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluated the potential of unconventional starches extracted from Andean tubers, ulluco (Ullucus tuberosus) and cubio (Tropaeolum tuberosum), as raw materials for 3D food printing. Gels were formulated with starch concentrations of 8%, 10%, and 12% (w/v) and characterized in terms of microstructure and rheological properties. Both starches exhibited suitable printability, attributed to their pseudoplastic flow behavior. However, the hardness of the printed structures varied depending on starch type and concentration. Cubio starch showed higher hardness at both low and high concentrations (8% and 12%), whereas ulluco starch exhibited its highest hardness at the lowest concentration. Microscopic analysis revealed reticulated networks whose homogeneity was influenced by the degree of gelatinization and the starch content in the matrix. The printed gels demonstrated good resilience, variable hardness, and low crystallinity, indicating thermal-induced disruption of the native ordered structure. Rheologically, the samples showed viscoelastic behavior dominated by the elastic modulus (<i>G’</i>) and fitted the power-law model. These findings support the technological feasibility of ulluco and cubio starches as functional ingredients for the development of customized or functional foods through additive manufacturing technologies. Their application may foster the utilization of underused crops and contribute to the diversification of raw materials in the food industry.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11483-025-10016-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-025-10016-5","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated the potential of unconventional starches extracted from Andean tubers, ulluco (Ullucus tuberosus) and cubio (Tropaeolum tuberosum), as raw materials for 3D food printing. Gels were formulated with starch concentrations of 8%, 10%, and 12% (w/v) and characterized in terms of microstructure and rheological properties. Both starches exhibited suitable printability, attributed to their pseudoplastic flow behavior. However, the hardness of the printed structures varied depending on starch type and concentration. Cubio starch showed higher hardness at both low and high concentrations (8% and 12%), whereas ulluco starch exhibited its highest hardness at the lowest concentration. Microscopic analysis revealed reticulated networks whose homogeneity was influenced by the degree of gelatinization and the starch content in the matrix. The printed gels demonstrated good resilience, variable hardness, and low crystallinity, indicating thermal-induced disruption of the native ordered structure. Rheologically, the samples showed viscoelastic behavior dominated by the elastic modulus (G’) and fitted the power-law model. These findings support the technological feasibility of ulluco and cubio starches as functional ingredients for the development of customized or functional foods through additive manufacturing technologies. Their application may foster the utilization of underused crops and contribute to the diversification of raw materials in the food industry.

从安第斯块茎非常规淀粉的3D打印:微观结构,纹理和流变特性
本研究评估了从安第斯块茎植物ulluco (Ullucus tuberosus)和cubio (Tropaeolum tuberosum)中提取的非常规淀粉作为3D食品打印原料的潜力。凝胶的淀粉浓度分别为8%、10%和12% (w/v),并对凝胶的微观结构和流变特性进行了表征。这两种淀粉都表现出合适的印刷适性,归因于它们的假塑性流动行为。然而,打印结构的硬度取决于淀粉的类型和浓度。Cubio淀粉在低浓度和高浓度(8%和12%)均表现出较高的硬度,ulluco淀粉在最低浓度时表现出最高的硬度。显微分析显示网状结构的均匀性受糊化程度和基质中淀粉含量的影响。打印的凝胶表现出良好的回弹性、可变硬度和低结晶度,表明热诱导破坏了天然有序结构。流变学上,样品表现出以弹性模量G′为主导的粘弹性行为,符合幂律模型。这些发现支持了ulluco和cubio淀粉作为功能成分通过增材制造技术开发定制或功能食品的技术可行性。它们的应用可以促进对未充分利用的作物的利用,并有助于食品工业原料的多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Biophysics
Food Biophysics 工程技术-食品科技
CiteScore
5.80
自引率
3.30%
发文量
58
审稿时长
1 months
期刊介绍: Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell. A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信