Applications of order six cyclotomy to construct CSS quantum codes and quantum synchronizable codes

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Pramod Kumar Kewat, Varsha Tiwari
{"title":"Applications of order six cyclotomy to construct CSS quantum codes and quantum synchronizable codes","authors":"Pramod Kumar Kewat,&nbsp;Varsha Tiwari","doi":"10.1007/s11128-025-04883-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we introduce the sixth-order cyclotomy over <span>\\(\\mathbb {Z}_{2m},m\\)</span> is a prime and develop dual-containing cyclic codes, along with their augmented codes, resulting in optimal cyclic codes. By utilizing these cyclic codes, we design quantum synchronizable codes (QSCs) and Calderbank–Shor–Steane (CSS) quantum codes. Additionally, we derive some new CSS quantum codes and also demonstrate that the obtained QSCs exhibit maximum tolerance to alignment errors.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04883-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce the sixth-order cyclotomy over \(\mathbb {Z}_{2m},m\) is a prime and develop dual-containing cyclic codes, along with their augmented codes, resulting in optimal cyclic codes. By utilizing these cyclic codes, we design quantum synchronizable codes (QSCs) and Calderbank–Shor–Steane (CSS) quantum codes. Additionally, we derive some new CSS quantum codes and also demonstrate that the obtained QSCs exhibit maximum tolerance to alignment errors.

六阶环切开术在构造CSS量子码和量子同步码中的应用
在本文中,我们引入了\(\mathbb {Z}_{2m},m\)是素数上的六阶环切开术,并发展了双含循环码,以及它们的增广码,从而得到了最优循环码。利用这些循环码,我们设计了量子同步码(QSCs)和calderbank - shors - steane (CSS)量子码。此外,我们还推导了一些新的CSS量子码,并证明了所获得的量子码对校准误差具有最大的容忍度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信