{"title":"Opportunities for automation in continuous dynamic flow separation","authors":"Chetsada Khositanon, Panitan Thakhiew, Charoen Chinwanitcharoen, Kousuke Hiromori and Nopphon Weeranoppanant","doi":"10.1039/D5RE00215J","DOIUrl":null,"url":null,"abstract":"<p >Many separation techniques, such as chromatography, adsorption, and filtration, are dynamic by nature, with the profiles of chemical species varying over time. This time-dependent behavior makes dynamic flow separation inherently batchwise. Recently, automation has enabled the transformation of these batchwise processes into continuous operations. Automation devices, including separators, detectors/transmitters, control systems, and control devices, can be implemented for either open-loop or closed-loop control. In this minireview, we provide an overview of recent technologies for automated dynamic flow separation systems. Major automated separation techniques, such as liquid–liquid extraction, counter-current chromatography, flash chromatography, and dead-end filtration, are highlighted to illustrate how automation facilitates their transition to continuous operation. Additional examples of integrated reaction–separation systems and self-optimizing platforms for identifying optimal separation conditions are presented as part of the outlook for automated setups. Challenges related to accurate in-line detection, complex sample matrices, and varying physical properties are also addressed.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 9","pages":" 1978-1988"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00215j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many separation techniques, such as chromatography, adsorption, and filtration, are dynamic by nature, with the profiles of chemical species varying over time. This time-dependent behavior makes dynamic flow separation inherently batchwise. Recently, automation has enabled the transformation of these batchwise processes into continuous operations. Automation devices, including separators, detectors/transmitters, control systems, and control devices, can be implemented for either open-loop or closed-loop control. In this minireview, we provide an overview of recent technologies for automated dynamic flow separation systems. Major automated separation techniques, such as liquid–liquid extraction, counter-current chromatography, flash chromatography, and dead-end filtration, are highlighted to illustrate how automation facilitates their transition to continuous operation. Additional examples of integrated reaction–separation systems and self-optimizing platforms for identifying optimal separation conditions are presented as part of the outlook for automated setups. Challenges related to accurate in-line detection, complex sample matrices, and varying physical properties are also addressed.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.