{"title":"Data-Driven Decentralized Resilient Control for Large-Scale Systems Under DoS Attacks","authors":"Lijuan Zha;Jinzhao Miao;Jinliang Liu;Engang Tian;Chen Peng","doi":"10.1109/TCE.2025.3576804","DOIUrl":null,"url":null,"abstract":"This paper investigates the data-driven decentralized resilient control problem for large-scale systems (LSS) under randomly occurring Denial-of-Service (DoS) attacks. A min-max optimization criterion is established based on zero-sum differential game theory, and the corresponding optimal control strategy is derived. Global asymptotic stability of the closed-loop LSS is theoretically guaranteed under the proposed control scheme. A two-stage adaptive dynamic programming (ADP) algorithm, integrating reinforcement learning techniques with local state feedback, is proposed to derive the optimal control policy without requiring prior knowledge of the system model. Simulations are conducted in MATLAB on a multimachine power system benchmark. In particular, the two-stage ADP controller shortens the settling time by up to 7.7% and reduces overshooting by over 14.5% compared to the existing methods, thereby validating its robustness and superior performance in dynamic and adversarial environments.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 2","pages":"5310-5320"},"PeriodicalIF":10.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11025995/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the data-driven decentralized resilient control problem for large-scale systems (LSS) under randomly occurring Denial-of-Service (DoS) attacks. A min-max optimization criterion is established based on zero-sum differential game theory, and the corresponding optimal control strategy is derived. Global asymptotic stability of the closed-loop LSS is theoretically guaranteed under the proposed control scheme. A two-stage adaptive dynamic programming (ADP) algorithm, integrating reinforcement learning techniques with local state feedback, is proposed to derive the optimal control policy without requiring prior knowledge of the system model. Simulations are conducted in MATLAB on a multimachine power system benchmark. In particular, the two-stage ADP controller shortens the settling time by up to 7.7% and reduces overshooting by over 14.5% compared to the existing methods, thereby validating its robustness and superior performance in dynamic and adversarial environments.
期刊介绍:
The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.