A Novel Hybrid Model Based on Secondary Decomposition and Artificial Intelligence Approach for Abnormal Data Reconstruction

IF 10.9 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Anfeng Zhu;Qiancheng Zhao;Tianlong Yang;Ling Zhou
{"title":"A Novel Hybrid Model Based on Secondary Decomposition and Artificial Intelligence Approach for Abnormal Data Reconstruction","authors":"Anfeng Zhu;Qiancheng Zhao;Tianlong Yang;Ling Zhou","doi":"10.1109/TCE.2025.3577704","DOIUrl":null,"url":null,"abstract":"The abnormal anemometer of wind turbines may be caused by environmental and weather effects, which can adversely affect the correctness of other system parameters and the efficiency of the wind farm. To reconstruct the abnormal data accurately and efficiently, this study proposes a newly hybrid model for reconstruction based on variational mode decomposition (VMD), improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), improved grey wolf optimization (IGWO), and Long short term memory network (LSTM). In this model, the VMD is utilized to decompose the initial wind speed dates, the residual component is subjected to secondary decomposition using the ICEEMDAN, and the IGWO-LSTM model is built to reconstruct the wind speed data. To verify the validity of the developed approach 10-minute actual wind speed data from three stations in Hunan, China, are used. The experimental results of the developed technology are <inline-formula> <tex-math>$\\mathrm{RMSE}_{\\text {1-step}}{=}0.1827$ </tex-math></inline-formula>, <inline-formula> <tex-math>$\\mathrm{RMSE}_{\\text {2-step}}{=}0.2682$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$\\mathrm{RMSE}_{\\text {3-step}}{=}0.3649$ </tex-math></inline-formula> at Site 1; <inline-formula> <tex-math>$\\mathrm{RMSE}_{\\text {1-step}}{=}0.2084$ </tex-math></inline-formula>, <inline-formula> <tex-math>$\\mathrm{RMSE}_{\\text {2-step}}{=}0.3049$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$\\mathrm{RMSE}_{\\text {3-step}}{=}0.3785$ </tex-math></inline-formula> at Site 2; <inline-formula> <tex-math>$\\mathrm{RMSE}_{\\text {1-step}}{=}0.1994$ </tex-math></inline-formula>, <inline-formula> <tex-math>$\\mathrm{RMSE}_{\\text {2-step}}{=}0.2415$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$\\mathrm{RMSE}_{\\text {3-step}}{=}0.3625$ </tex-math></inline-formula> at Site 3. As a result, the reconstruction performance of this model is available to enhances the efficiency of wind farms.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 2","pages":"3431-3441"},"PeriodicalIF":10.9000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11028912/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The abnormal anemometer of wind turbines may be caused by environmental and weather effects, which can adversely affect the correctness of other system parameters and the efficiency of the wind farm. To reconstruct the abnormal data accurately and efficiently, this study proposes a newly hybrid model for reconstruction based on variational mode decomposition (VMD), improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), improved grey wolf optimization (IGWO), and Long short term memory network (LSTM). In this model, the VMD is utilized to decompose the initial wind speed dates, the residual component is subjected to secondary decomposition using the ICEEMDAN, and the IGWO-LSTM model is built to reconstruct the wind speed data. To verify the validity of the developed approach 10-minute actual wind speed data from three stations in Hunan, China, are used. The experimental results of the developed technology are $\mathrm{RMSE}_{\text {1-step}}{=}0.1827$ , $\mathrm{RMSE}_{\text {2-step}}{=}0.2682$ , and $\mathrm{RMSE}_{\text {3-step}}{=}0.3649$ at Site 1; $\mathrm{RMSE}_{\text {1-step}}{=}0.2084$ , $\mathrm{RMSE}_{\text {2-step}}{=}0.3049$ , and $\mathrm{RMSE}_{\text {3-step}}{=}0.3785$ at Site 2; $\mathrm{RMSE}_{\text {1-step}}{=}0.1994$ , $\mathrm{RMSE}_{\text {2-step}}{=}0.2415$ , and $\mathrm{RMSE}_{\text {3-step}}{=}0.3625$ at Site 3. As a result, the reconstruction performance of this model is available to enhances the efficiency of wind farms.
一种基于二次分解和人工智能的异常数据重建混合模型
风力机风速异常可能是由环境和天气影响引起的,从而影响其他系统参数的正确性和风电场的效率。为了准确高效地重构异常数据,本文提出了一种基于变分模态分解(VMD)、改进的自适应噪声全系综经验模态分解(ICEEMDAN)、改进的灰狼优化(IGWO)和长短期记忆网络(LSTM)的混合重构模型。该模型利用VMD对初始风速数据进行分解,利用ICEEMDAN对残差分量进行二次分解,建立IGWO-LSTM模型对风速数据进行重构。为了验证所开发方法的有效性,使用了中国湖南三个站点的10分钟实际风速数据。所开发的技术在Site 1的实验结果为$\mathrm{RMSE}_{\text {1-step}}{=}0.1827$、$\mathrm{RMSE}_{\text {2-step}}{=}0.2682$、$\mathrm{RMSE}_{\text {3-step}}{=}0.3649$;$ \ mathrm {RMSE} _{\文本{互译}}{=}0.2084美元,美元\ mathrm {RMSE} _{\文本{两步}}{=}0.3049美元,美元\ mathrm {RMSE} _{\文本{3步}}{=}0.3785网站2美元;$ \ mathrm {RMSE} _{\文本{互译}}{=}0.1994美元,美元\ mathrm {RMSE} _{\文本{两步}}{=}0.2415美元,美元\ mathrm {RMSE} _{\文本{3步}}{=}0.3625美元在网站3。因此,该模型的重建性能可用于提高风电场的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信