Optimized EEG Multi-Noise Removal and Compression: Deploying a PbP-QLP Enhanced Autoencoder on STM32 Microcontroller

IF 10.9 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Deepak Kumar;Udit Satija
{"title":"Optimized EEG Multi-Noise Removal and Compression: Deploying a PbP-QLP Enhanced Autoencoder on STM32 Microcontroller","authors":"Deepak Kumar;Udit Satija","doi":"10.1109/TCE.2025.3562388","DOIUrl":null,"url":null,"abstract":"Electroencephalograms (EEGs) are effective and patient-friendly for diagnosing, monitoring, and preventing mental disorders. However, due to their low voltage, EEG signals often contain noise that obscures critical features, risking misdiagnosis. Current denoising methods typically address one or two noise types and struggle with memory limitations on edge devices. To overcome these challenges, we introduce a quantization-based compressed denoising autoencoder (DAE) model using a PbP-QLP, a low-rank approximation (LRA) technique, for multi-noise removal (15 types, including power-line, baseline wander, ocular, muscle artifacts, and combinations) in EEGs on low-memory edge devices. Our compression technique reduces the model size from 8 to 1.51 MB, achieving 81% weight compression with minimal loss.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 2","pages":"3218-3228"},"PeriodicalIF":10.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10970023/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalograms (EEGs) are effective and patient-friendly for diagnosing, monitoring, and preventing mental disorders. However, due to their low voltage, EEG signals often contain noise that obscures critical features, risking misdiagnosis. Current denoising methods typically address one or two noise types and struggle with memory limitations on edge devices. To overcome these challenges, we introduce a quantization-based compressed denoising autoencoder (DAE) model using a PbP-QLP, a low-rank approximation (LRA) technique, for multi-noise removal (15 types, including power-line, baseline wander, ocular, muscle artifacts, and combinations) in EEGs on low-memory edge devices. Our compression technique reduces the model size from 8 to 1.51 MB, achieving 81% weight compression with minimal loss.
优化脑电图多噪声去除和压缩:在STM32微控制器上部署PbP-QLP增强自编码器
脑电图(eeg)对诊断、监测和预防精神障碍是有效且对患者友好的。然而,由于其低电压,脑电图信号往往含有噪声,掩盖了关键特征,有误诊的风险。当前的去噪方法通常处理一种或两种噪声类型,并且与边缘设备的内存限制作斗争。为了克服这些挑战,我们引入了一种基于量化的压缩去噪自编码器(DAE)模型,该模型使用PbP-QLP,一种低秩近似(LRA)技术,用于在低内存边缘设备上的脑电图中去除多噪声(15种类型,包括电力线、基线漂移、眼部、肌肉伪影和组合)。我们的压缩技术将模型大小从8 MB减少到1.51 MB,以最小的损失实现81%的权重压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信