A Simons type condition for instability of F-Yang-Mills connections

IF 0.7 4区 数学 Q3 MATHEMATICS
Kurando Baba , Kazuto Shintani
{"title":"A Simons type condition for instability of F-Yang-Mills connections","authors":"Kurando Baba ,&nbsp;Kazuto Shintani","doi":"10.1016/j.difgeo.2025.102275","DOIUrl":null,"url":null,"abstract":"<div><div><em>F</em>-Yang-Mills connections are critical points of <em>F</em>-Yang Mills functional on the space of connections of a principal fiber bundle, which are generalizations of Yang-Mills connections, <em>p</em>-Yang-Mills connections and exponential Yang-Mills connections and so on. Here, <em>F</em> is a strictly increasing <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-function. In this paper, we extend Simons theorem for the instability of Yang-Mills connections to <em>F</em>-Yang-Mills connections. We derive a sufficient condition that any non-flat, <em>F</em>-Yang-Mills connection over submanifolds in a Euclidean space is unstable. In the standard sphere case, this condition is expressed by an inequality involving its dimension and the degree of the differential of the function <em>F</em>. Our main results are proved by extending Kobayashi-Ohnita-Takeuchi's calculation to <em>F</em>-Yang-Mills connections.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"100 ","pages":"Article 102275"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000506","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

F-Yang-Mills connections are critical points of F-Yang Mills functional on the space of connections of a principal fiber bundle, which are generalizations of Yang-Mills connections, p-Yang-Mills connections and exponential Yang-Mills connections and so on. Here, F is a strictly increasing C2-function. In this paper, we extend Simons theorem for the instability of Yang-Mills connections to F-Yang-Mills connections. We derive a sufficient condition that any non-flat, F-Yang-Mills connection over submanifolds in a Euclidean space is unstable. In the standard sphere case, this condition is expressed by an inequality involving its dimension and the degree of the differential of the function F. Our main results are proved by extending Kobayashi-Ohnita-Takeuchi's calculation to F-Yang-Mills connections.
F-Yang-Mills连接不稳定的Simons型条件
F-Yang-Mills连接是在主纤维束连接空间上泛函的F-Yang Mills的临界点,它是Yang-Mills连接、p-Yang-Mills连接和指数Yang-Mills连接等的推广。这里,F是严格递增的c2函数。本文将Yang-Mills连接不稳定性的Simons定理推广到F-Yang-Mills连接。给出了欧几里德空间中子流形上的任何非平坦的F-Yang-Mills连接是不稳定的一个充分条件。在标准球面情况下,这个条件用一个涉及到它的维数和函数f的微分阶数的不等式来表示。我们的主要结果通过将Kobayashi-Ohnita-Takeuchi的计算推广到F-Yang-Mills连接得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信