Posterior contraction and uncertainty quantification for the multivariate spike-and-slab LASSO

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Yunyi Shen , Sameer K. Deshpande
{"title":"Posterior contraction and uncertainty quantification for the multivariate spike-and-slab LASSO","authors":"Yunyi Shen ,&nbsp;Sameer K. Deshpande","doi":"10.1016/j.jmva.2025.105493","DOIUrl":null,"url":null,"abstract":"<div><div>We study the asymptotic properties of Deshpande et al. (2019)’s multivariate spike-and-slab LASSO (mSSL) procedure for simultaneous variable and covariance selection in the sparse multivariate linear regression problem. In that problem, <span><math><mi>q</mi></math></span> correlated responses are regressed onto <span><math><mi>p</mi></math></span> covariates and the mSSL works by placing separate spike-and-slab priors on the entries in the matrix of marginal covariate effects and off-diagonal elements in the upper triangle of the residual precision matrix. Under mild assumptions about these matrices, we establish the posterior contraction rate for the mSSL posterior in the asymptotic regime where both <span><math><mi>p</mi></math></span> and <span><math><mi>q</mi></math></span> diverge with <span><math><mrow><mi>n</mi><mo>.</mo></mrow></math></span> By “de-biasing” the corresponding MAP estimates, we obtain confidence intervals for each covariate effect and residual partial correlation. In extensive simulation studies, these intervals displayed close-to-nominal frequentist coverage in finite sample settings but tended to be substantially longer than those obtained using a version of the Bayesian bootstrap that randomly re-weights the prior. We further show that the de-biased intervals for individual covariate effects are asymptotically valid.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"210 ","pages":"Article 105493"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000880","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the asymptotic properties of Deshpande et al. (2019)’s multivariate spike-and-slab LASSO (mSSL) procedure for simultaneous variable and covariance selection in the sparse multivariate linear regression problem. In that problem, q correlated responses are regressed onto p covariates and the mSSL works by placing separate spike-and-slab priors on the entries in the matrix of marginal covariate effects and off-diagonal elements in the upper triangle of the residual precision matrix. Under mild assumptions about these matrices, we establish the posterior contraction rate for the mSSL posterior in the asymptotic regime where both p and q diverge with n. By “de-biasing” the corresponding MAP estimates, we obtain confidence intervals for each covariate effect and residual partial correlation. In extensive simulation studies, these intervals displayed close-to-nominal frequentist coverage in finite sample settings but tended to be substantially longer than those obtained using a version of the Bayesian bootstrap that randomly re-weights the prior. We further show that the de-biased intervals for individual covariate effects are asymptotically valid.
多变量刺板LASSO的后验收缩和不确定性量化
我们研究了Deshpande等人(2019)在稀疏多元线性回归问题中同时选择变量和协方差的多元spike-and-slab LASSO (mSSL)过程的渐近性质。在该问题中,q个相关响应回归到p个协变量,mSSL通过在边际协变量效应矩阵中的条目和残差精度矩阵上三角形的非对角线元素上放置单独的spike-and-slab先验来工作。在这些矩阵的温和假设下,我们在p和q都随n发散的渐近区域建立了mSSL后验的后验收缩率。通过“去偏置”相应的MAP估计,我们获得了每个协变量效应和残差偏相关的置信区间。在广泛的模拟研究中,这些区间在有限样本设置中显示接近名义频率覆盖,但往往比使用随机重新加权先验的贝叶斯bootstrap版本获得的时间长得多。我们进一步证明了个体协变量效应的去偏区间是渐近有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信