Non-semisimple sl2 quantum invariants of fibred links

IF 1.5 1区 数学 Q1 MATHEMATICS
Daniel López Neumann, Roland van der Veen
{"title":"Non-semisimple sl2 quantum invariants of fibred links","authors":"Daniel López Neumann,&nbsp;Roland van der Veen","doi":"10.1016/j.aim.2025.110494","DOIUrl":null,"url":null,"abstract":"<div><div>The Akutsu-Deguchi-Ohtsuki (ADO) invariants are the most studied quantum link invariants coming from a non-semisimple tensor category. We show that, for fibred links in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, the degree of the ADO invariant is determined by the genus and the top coefficient is a root of unity. More precisely, we prove that the top coefficient is determined by the Hopf invariant of the plane field of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> associated to the fiber surface. Our proof is based on the genus bounds established in our previous work, together with a theorem of Giroux-Goodman stating that fiber surfaces in the three-sphere can be obtained from a disk by plumbing/deplumbing Hopf bands.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110494"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003925","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Akutsu-Deguchi-Ohtsuki (ADO) invariants are the most studied quantum link invariants coming from a non-semisimple tensor category. We show that, for fibred links in S3, the degree of the ADO invariant is determined by the genus and the top coefficient is a root of unity. More precisely, we prove that the top coefficient is determined by the Hopf invariant of the plane field of S3 associated to the fiber surface. Our proof is based on the genus bounds established in our previous work, together with a theorem of Giroux-Goodman stating that fiber surfaces in the three-sphere can be obtained from a disk by plumbing/deplumbing Hopf bands.
光纤链路的非半简单sl2量子不变量
Akutsu-Deguchi-Ohtsuki (ADO)不变量是研究最多的来自非半简单张量范畴的量子链接不变量。我们证明,对于S3中的纤维链路,ADO不变量的程度由属决定,顶部系数是统一的根。更准确地说,我们证明了顶部系数是由与纤维表面相关的S3平面场的Hopf不变量决定的。我们的证明是基于我们以前的工作中建立的属界,以及吉鲁-古德曼定理,该定理表明三球中的纤维表面可以通过管道/管道Hopf带从圆盘中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信