Neural network implementation of model predictive control with stability guarantees

IF 4.1 Q2 ENGINEERING, CHEMICAL
Arthur Khodaverdian , Dhruv Gohil , Panagiotis D. Christofides
{"title":"Neural network implementation of model predictive control with stability guarantees","authors":"Arthur Khodaverdian ,&nbsp;Dhruv Gohil ,&nbsp;Panagiotis D. Christofides","doi":"10.1016/j.dche.2025.100262","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores the use of supervised learning on data generated by a model predictive controller (MPC) to train a neural network (NN). The goal is to create an approximate control policy that can replace the MPC, offering reduced computational complexity while maintaining stability guarantees. Through the use of Lyapunov-based stability constraints, an MPC can be designed to guarantee stability. Once designed, this MPC can be used to generate a dataset of various state-space points and their resulting immediate optimal control actions. With the MPC dataset representing an optimal control policy, an NN is trained to function as a direct substitute for the MPC. The resulting approximate control policy can then be applied in real-time to the process, with stability guarantees being enforced through post-inference validation. If, for a given set of sensor readings, the NN yields control actions that violate the Lyapunov stability constraints used in the MPC, the control action is discarded and replaced with stabilizing control from a fallback stabilizing controller. This control architecture is applied to a benchmark chemical reactor model. Using this model, a comprehensive study of the stability, performance, robustness, and computational burden of the approach is carried out.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"16 ","pages":"Article 100262"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores the use of supervised learning on data generated by a model predictive controller (MPC) to train a neural network (NN). The goal is to create an approximate control policy that can replace the MPC, offering reduced computational complexity while maintaining stability guarantees. Through the use of Lyapunov-based stability constraints, an MPC can be designed to guarantee stability. Once designed, this MPC can be used to generate a dataset of various state-space points and their resulting immediate optimal control actions. With the MPC dataset representing an optimal control policy, an NN is trained to function as a direct substitute for the MPC. The resulting approximate control policy can then be applied in real-time to the process, with stability guarantees being enforced through post-inference validation. If, for a given set of sensor readings, the NN yields control actions that violate the Lyapunov stability constraints used in the MPC, the control action is discarded and replaced with stabilizing control from a fallback stabilizing controller. This control architecture is applied to a benchmark chemical reactor model. Using this model, a comprehensive study of the stability, performance, robustness, and computational burden of the approach is carried out.
神经网络实现具有稳定性保证的模型预测控制
这项工作探索了对模型预测控制器(MPC)生成的数据使用监督学习来训练神经网络(NN)。目标是创建一个可以取代MPC的近似控制策略,在保持稳定性保证的同时降低计算复杂度。通过使用基于lyapunov的稳定性约束,可以设计出保证稳定性的MPC。一旦设计好,这个MPC可以用来生成各种状态空间点的数据集,以及它们产生的即时最优控制行为。使用MPC数据集表示最优控制策略,训练神经网络作为MPC的直接替代品。由此产生的近似控制策略可以实时应用于过程,并通过推理后验证强制执行稳定性保证。如果对于给定的一组传感器读数,神经网络产生的控制动作违反了MPC中使用的李雅普诺夫稳定性约束,则控制动作被丢弃,并由一个回降稳定控制器的稳定控制取代。将该控制体系结构应用于一个基准化学反应器模型。利用该模型,对该方法的稳定性、性能、鲁棒性和计算量进行了全面的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信