PyPotteryLens: An open-source deep learning framework for automated digitisation of archaeological pottery documentation

Q1 Social Sciences
Lorenzo Cardarelli
{"title":"PyPotteryLens: An open-source deep learning framework for automated digitisation of archaeological pottery documentation","authors":"Lorenzo Cardarelli","doi":"10.1016/j.daach.2025.e00452","DOIUrl":null,"url":null,"abstract":"<div><div>Archaeological pottery documentation and study represents a crucial but time-consuming aspect of archaeology. While recent years have seen advances in digital documentation methods, vast amounts of legacy data remain locked in traditional publications. This paper introduces <em>PyPotteryLens</em>, an open-source framework that leverages deep learning to automate the digitisation and processing of archaeological pottery drawings from published sources. The system combines state-of-the-art computer vision models (YOLO for instance segmentation and EfficientNetV2 for classification) with an intuitive user interface, making advanced digital methods accessible to archaeologists regardless of technical expertise. The framework achieves over 97 % precision and recall in pottery detection and classification tasks, while reducing processing time by up to 5 × to 20 × compared to manual methods. Also, the system's modular architecture facilitates extension to other archaeological materials, while its standardised output format ensures long-term preservation and reusability of digitised data as well as solid basis for training machine learning algorithms.</div></div>","PeriodicalId":38225,"journal":{"name":"Digital Applications in Archaeology and Cultural Heritage","volume":"38 ","pages":"Article e00452"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Applications in Archaeology and Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212054825000542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Archaeological pottery documentation and study represents a crucial but time-consuming aspect of archaeology. While recent years have seen advances in digital documentation methods, vast amounts of legacy data remain locked in traditional publications. This paper introduces PyPotteryLens, an open-source framework that leverages deep learning to automate the digitisation and processing of archaeological pottery drawings from published sources. The system combines state-of-the-art computer vision models (YOLO for instance segmentation and EfficientNetV2 for classification) with an intuitive user interface, making advanced digital methods accessible to archaeologists regardless of technical expertise. The framework achieves over 97 % precision and recall in pottery detection and classification tasks, while reducing processing time by up to 5 × to 20 × compared to manual methods. Also, the system's modular architecture facilitates extension to other archaeological materials, while its standardised output format ensures long-term preservation and reusability of digitised data as well as solid basis for training machine learning algorithms.

Abstract Image

PyPotteryLens:一个开源的深度学习框架,用于考古陶器文档的自动化数字化
考古陶器文献和研究代表了考古学的一个重要但耗时的方面。虽然近年来数字文档方法取得了进步,但大量遗留数据仍被锁定在传统出版物中。本文介绍了PyPotteryLens,这是一个利用深度学习来自动化数字化和处理已发布来源的考古陶器图纸的开源框架。该系统将最先进的计算机视觉模型(例如分割YOLO和分类effentnetv2)与直观的用户界面相结合,使考古学家可以使用先进的数字方法,而无需技术专业知识。该框架在陶器检测和分类任务中实现了超过97%的准确率和召回率,同时与人工方法相比,将处理时间缩短了5到20倍。此外,该系统的模块化架构有助于扩展到其他考古材料,而其标准化的输出格式确保了数字化数据的长期保存和可重用性,以及训练机器学习算法的坚实基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信