Mohamed J. Saadh , Omer Qutaiba B. Allela , Suhas Ballal , Morug Salih Mahdi , Mamata Chahar , Rajni Verma , Rouaida Kadhim A Al-hussein , Mohaned Adil , Mahmood Jasem Jawad , Ali M. Ali Al-Nuaimi
{"title":"The effects of microbiota-derived short-chain fatty acids on T lymphocytes: From autoimmune diseases to cancer","authors":"Mohamed J. Saadh , Omer Qutaiba B. Allela , Suhas Ballal , Morug Salih Mahdi , Mamata Chahar , Rajni Verma , Rouaida Kadhim A Al-hussein , Mohaned Adil , Mahmood Jasem Jawad , Ali M. Ali Al-Nuaimi","doi":"10.1016/j.seminoncol.2025.152398","DOIUrl":null,"url":null,"abstract":"<div><div>Short-chain fatty acids (SCFAs), acetate, propionate, and butyrate, are the microbial metabolites that have significant functions in host immune modulation, especially T lymphocyte function. Implication by recent evidence indicates SCFAs regulate T-cell growth, differentiation, metabolism, effector function, and apoptosis through histone deacetylase (HDAC) inhibition, G-protein-coupled receptor (GPCR) signaling, and metabolic reprogramming processes. Butyrate, for example, enhances regulatory T cell (Treg) and Interleukin 10 (IL-10)-producing T helper 1 (Th1) cell differentiation as well as context-dependent regulation on T helper 17 (Th17) cell development. SCFAs also impact cytotoxic CD8+ T cells through augmented production of IFN-γ and memory formation, which enhances antiviral and antitumor immunity. SCFAs reprogram T-cell metabolism through enhanced acetyl-CoA, mechanistic target of rapamycin (mTOR) signaling, and fatty acid oxidation (FAO), thus promoting the unique metabolic requirements of effector and memory T-cell subsets. In addition, SCFAs induce apoptosis of activated T cells through the Fas upregulation by inhibiting HDAC1. SCFA dysregulation plays a role in disease and autoimmune disorders like type 1 diabetes and rheumatoid arthritis, whereas therapeutic supplementation reduces inflammation and immune tolerance. SCFAs also amplify the antitumor effect of immune checkpoint inhibitors (eg, anti-programmed cell death protein 1 (anti-PD-1)) in cancer by driving CD8+ T-cell activation, infiltration, and Interferon gamma (IFNγ) production, partially through the transcriptional regulator Inhibitor of DNA binding 2 (ID2). Significantly, tissue- and disease-specific differential expression and functional implication of SCFA receptors (eg, GPR43, GPR41, GPR109A) emphasize the complexity of SCFA-mediated signaling. In conclusion, the current review emphasizes the multifunctional role of microbiota-derived SCFAs in T lymphocyte biology and their therapeutic potential in cancer, infection, and autoimmune diseases.</div></div>","PeriodicalId":21750,"journal":{"name":"Seminars in oncology","volume":"52 5","pages":"Article 152398"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093775425000909","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Short-chain fatty acids (SCFAs), acetate, propionate, and butyrate, are the microbial metabolites that have significant functions in host immune modulation, especially T lymphocyte function. Implication by recent evidence indicates SCFAs regulate T-cell growth, differentiation, metabolism, effector function, and apoptosis through histone deacetylase (HDAC) inhibition, G-protein-coupled receptor (GPCR) signaling, and metabolic reprogramming processes. Butyrate, for example, enhances regulatory T cell (Treg) and Interleukin 10 (IL-10)-producing T helper 1 (Th1) cell differentiation as well as context-dependent regulation on T helper 17 (Th17) cell development. SCFAs also impact cytotoxic CD8+ T cells through augmented production of IFN-γ and memory formation, which enhances antiviral and antitumor immunity. SCFAs reprogram T-cell metabolism through enhanced acetyl-CoA, mechanistic target of rapamycin (mTOR) signaling, and fatty acid oxidation (FAO), thus promoting the unique metabolic requirements of effector and memory T-cell subsets. In addition, SCFAs induce apoptosis of activated T cells through the Fas upregulation by inhibiting HDAC1. SCFA dysregulation plays a role in disease and autoimmune disorders like type 1 diabetes and rheumatoid arthritis, whereas therapeutic supplementation reduces inflammation and immune tolerance. SCFAs also amplify the antitumor effect of immune checkpoint inhibitors (eg, anti-programmed cell death protein 1 (anti-PD-1)) in cancer by driving CD8+ T-cell activation, infiltration, and Interferon gamma (IFNγ) production, partially through the transcriptional regulator Inhibitor of DNA binding 2 (ID2). Significantly, tissue- and disease-specific differential expression and functional implication of SCFA receptors (eg, GPR43, GPR41, GPR109A) emphasize the complexity of SCFA-mediated signaling. In conclusion, the current review emphasizes the multifunctional role of microbiota-derived SCFAs in T lymphocyte biology and their therapeutic potential in cancer, infection, and autoimmune diseases.
期刊介绍:
Seminars in Oncology brings you current, authoritative, and practical reviews of developments in the etiology, diagnosis and management of cancer. Each issue examines topics of clinical importance, with an emphasis on providing both the basic knowledge needed to better understand a topic as well as evidence-based opinions from leaders in the field. Seminars in Oncology also seeks to be a venue for sharing a diversity of opinions including those that might be considered "outside the box". We welcome a healthy and respectful exchange of opinions and urge you to approach us with your insights as well as suggestions of topics that you deem worthy of coverage. By helping the reader understand the basic biology and the therapy of cancer as they learn the nuances from experts, all in a journal that encourages the exchange of ideas we aim to help move the treatment of cancer forward.