Optimal gradient regularity to degenerate fully nonlinear elliptic models with oblique boundary condition

IF 1.3 2区 数学 Q1 MATHEMATICS
Junior da S. Bessa , Gleydson C. Ricarte , Paulo H. da C. Silva
{"title":"Optimal gradient regularity to degenerate fully nonlinear elliptic models with oblique boundary condition","authors":"Junior da S. Bessa ,&nbsp;Gleydson C. Ricarte ,&nbsp;Paulo H. da C. Silva","doi":"10.1016/j.na.2025.113919","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the optimal gradient regularity of viscosity solutions to oblique tangential derivative problems for a class of degenerate fully nonlinear second order uniformly elliptic equation with oblique boundary conditions in form <span><math><mfenced><mrow><mtable><mtr><mtd><mi>G</mi><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mo>∇</mo><mi>u</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mtd><mtd><mo>=</mo></mtd><mtd><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mtd><mtd><mtext>in</mtext></mtd><mtd><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>β</mi><mi>⋅</mi><mo>∇</mo><mi>u</mi><mo>+</mo><mi>γ</mi><mi>u</mi></mtd><mtd><mo>=</mo></mtd><mtd><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mtd><mtd><mtext>on</mtext></mtd><mtd><mi>∂</mi><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span> where <span><math><mi>G</mi></math></span> is a second-order operator that is uniformly elliptic with degeneracy along the set of critical points of the a priori solution. Moreover, we obtain Schauder-type estimates for fully nonlinear elliptic equations with oblique boundary condition with constant coefficients, when <span><math><mi>F</mi></math></span> is a quasi-convex operator. As an application of these results, we obtain the optimal regularity of the gradient for the degenerate problem described above.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113919"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001737","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the optimal gradient regularity of viscosity solutions to oblique tangential derivative problems for a class of degenerate fully nonlinear second order uniformly elliptic equation with oblique boundary conditions in form G(D2u,u,x)=f(x)inΩβu+γu=g(x)onΩ, where G is a second-order operator that is uniformly elliptic with degeneracy along the set of critical points of the a priori solution. Moreover, we obtain Schauder-type estimates for fully nonlinear elliptic equations with oblique boundary condition with constant coefficients, when F is a quasi-convex operator. As an application of these results, we obtain the optimal regularity of the gradient for the degenerate problem described above.
具有斜边界条件的退化完全非线性椭圆模型的最优梯度正则性
本文研究了一类倾斜边界条件为G(D2u,∇u,x)=f(x)inΩβ·∇u+γu= G(x)在∂Ω上的退化的完全非线性二阶一致椭圆方程斜切导数问题粘度解的最优梯度正则性,其中G是沿先验解的临界点集退化的一致椭圆二阶算子。此外,当F是拟凸算子时,我们得到了具有常系数斜边界条件的全非线性椭圆方程的schauder型估计。作为这些结果的应用,我们得到了上述退化问题的梯度的最优正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信