Haizeng Song , Yilu Wu , Yang Shao , Yuan Zhu , Huaju Song , Yun Shan
{"title":"Reversible assembly of Cu4X sites to integrate a dynamic reaction pathway for electrochemical nitrate reduction","authors":"Haizeng Song , Yilu Wu , Yang Shao , Yuan Zhu , Huaju Song , Yun Shan","doi":"10.1016/j.comptc.2025.115437","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical nitrate reduction to ammonia plays an important role in developing new-type energy conversion technologies, which is however facing the difficulty of complex reaction kinetics and high rate-limiting potentials. Distinct from traditional nanostructures, herein, we suggest a reversible assembly of Cu<sub>4</sub>X (X = F, Cl, Br, I) by anchoring X ions in electrolyte onto the Cu surfaces, in which the X ion migration and redistribution during nitrate reduction reaction can effectively regulate the Gibbs free energies of rate-limiting intermediates, finally leading to a reintegration of the switchable reaction pathway. More interestingly, the anchored I atom with a lower diffusion energy than other halogens can donate some additional charges to the adjacent Cu sites in favor of the electronic delocalization and then enhance its antibonding interactions with the rate-limiting reactions. This work offers a reversible atomic assembly strategy to integrate some dynamic reactive site nets that sheds light on designing new-type catalysts.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1253 ","pages":"Article 115437"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25003731","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical nitrate reduction to ammonia plays an important role in developing new-type energy conversion technologies, which is however facing the difficulty of complex reaction kinetics and high rate-limiting potentials. Distinct from traditional nanostructures, herein, we suggest a reversible assembly of Cu4X (X = F, Cl, Br, I) by anchoring X ions in electrolyte onto the Cu surfaces, in which the X ion migration and redistribution during nitrate reduction reaction can effectively regulate the Gibbs free energies of rate-limiting intermediates, finally leading to a reintegration of the switchable reaction pathway. More interestingly, the anchored I atom with a lower diffusion energy than other halogens can donate some additional charges to the adjacent Cu sites in favor of the electronic delocalization and then enhance its antibonding interactions with the rate-limiting reactions. This work offers a reversible atomic assembly strategy to integrate some dynamic reactive site nets that sheds light on designing new-type catalysts.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.