{"title":"Role of RNA in genome folding: It's all about affinity","authors":"Rafal Czapiewski, Nick Gilbert","doi":"10.1016/j.sbi.2025.103136","DOIUrl":null,"url":null,"abstract":"<div><div>In mammalian cells, RNA species make up ∼10% of chromatin by mass and play a structural role in the nucleus by acting as scaffolds and influencing genome organisation. Although many proteins bind nuclear RNAs, these interactions are often non-specific, making it challenging to define RNA's role in genome folding. Nonetheless, a clearer picture is emerging. Some RNAs, like NEAT1 and MALAT1, have high affinity for specific RNA-binding proteins and form the basis for nuclear bodies. In contrast, many nuclear proteins bind RNA weakly, resulting in numerous low-affinity interactions. We propose that these interactions generate a complex RNA-protein network with dynamic, gel-like properties that modulate chromatin folding and transcription factor mobility. This suggests an exciting feedback mechanism in which newly transcribed RNA contributes directly to shaping chromatin architecture.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"94 ","pages":"Article 103136"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X2500154X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In mammalian cells, RNA species make up ∼10% of chromatin by mass and play a structural role in the nucleus by acting as scaffolds and influencing genome organisation. Although many proteins bind nuclear RNAs, these interactions are often non-specific, making it challenging to define RNA's role in genome folding. Nonetheless, a clearer picture is emerging. Some RNAs, like NEAT1 and MALAT1, have high affinity for specific RNA-binding proteins and form the basis for nuclear bodies. In contrast, many nuclear proteins bind RNA weakly, resulting in numerous low-affinity interactions. We propose that these interactions generate a complex RNA-protein network with dynamic, gel-like properties that modulate chromatin folding and transcription factor mobility. This suggests an exciting feedback mechanism in which newly transcribed RNA contributes directly to shaping chromatin architecture.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation