Ming-Wei Wang , Kaini Hang , Wei Han , Xin Li , Qingtong Zhou , Dehua Yang
{"title":"FtsZ as a novel target for antibiotics development: Promises and challenges","authors":"Ming-Wei Wang , Kaini Hang , Wei Han , Xin Li , Qingtong Zhou , Dehua Yang","doi":"10.1016/j.apsb.2025.06.008","DOIUrl":null,"url":null,"abstract":"<div><div>Filamenting temperature-sensitive mutant Z (FtsZ), a protein essential for bacterial cell division, is highly conserved across bacterial species but absent in humans, positioning it as a strategic target for the development of antibiotics. Significant efforts to identify FtsZ inhibitors—<em>via</em> biochemical assays (<em>e.g.</em>, GTPase activity) and cellular approaches (<em>e.g.</em>, immunofluorescence)—have yielded over 100 natural products and synthetic compounds, whose cheminformatics clustering underscores a limited chemical diversity among the current scaffolds. Structural studies, including X-ray crystallography and cryo-electron microscopy, have resolved 97 FtsZ structures revealing conserved polymerization mechanisms and conformational plasticity, as exemplified by extremophile adaptations (<em>e.g.</em>, <em>Shewanella benthica</em> from the high-pressure environment of the Mariana Trench's Challenger Deep). However, clinical translation is hindered by weak binding affinities, inhibitory inefficacy, dynamic conformational flexibility, and evolving drug resistance linked to FtsZ's functional plasticity. To address these challenges, future efforts should be directed to resolve transient assembly intermediates, leveraging machine learning with high-throughput screening, and integrating structural biology with pharmacokinetic optimization. Multidisciplinary strategies combining these approaches hold promise for translating FtsZ-focused research into clinically viable therapies, addressing the critical unmet need posed by antibiotics resistance.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"15 8","pages":"Pages 3978-3996"},"PeriodicalIF":14.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383525004113","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Filamenting temperature-sensitive mutant Z (FtsZ), a protein essential for bacterial cell division, is highly conserved across bacterial species but absent in humans, positioning it as a strategic target for the development of antibiotics. Significant efforts to identify FtsZ inhibitors—via biochemical assays (e.g., GTPase activity) and cellular approaches (e.g., immunofluorescence)—have yielded over 100 natural products and synthetic compounds, whose cheminformatics clustering underscores a limited chemical diversity among the current scaffolds. Structural studies, including X-ray crystallography and cryo-electron microscopy, have resolved 97 FtsZ structures revealing conserved polymerization mechanisms and conformational plasticity, as exemplified by extremophile adaptations (e.g., Shewanella benthica from the high-pressure environment of the Mariana Trench's Challenger Deep). However, clinical translation is hindered by weak binding affinities, inhibitory inefficacy, dynamic conformational flexibility, and evolving drug resistance linked to FtsZ's functional plasticity. To address these challenges, future efforts should be directed to resolve transient assembly intermediates, leveraging machine learning with high-throughput screening, and integrating structural biology with pharmacokinetic optimization. Multidisciplinary strategies combining these approaches hold promise for translating FtsZ-focused research into clinically viable therapies, addressing the critical unmet need posed by antibiotics resistance.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.