Unveiling the role of surface functionalization in tailoring electronic, optical, and quantum capacitance properties of Ti2C MXenes

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Sruthi T., Kavyasree N., Sneha A.K., Vincent Mathew
{"title":"Unveiling the role of surface functionalization in tailoring electronic, optical, and quantum capacitance properties of Ti2C MXenes","authors":"Sruthi T.,&nbsp;Kavyasree N.,&nbsp;Sneha A.K.,&nbsp;Vincent Mathew","doi":"10.1016/j.cocom.2025.e01100","DOIUrl":null,"url":null,"abstract":"<div><div>Surface functionalization has fueled the emergence of Ti-based MXenes as a class of two-dimensional quantum materials with remarkable tunability. When it comes to surface-induced modification of electrical and optical capabilities, Ti<sub>2</sub>C, a monolayer version with lower dimensionality than the well-researched Ti<sub>3</sub>C<sub>2</sub>, offers a model system. Using density functional theory (DFT) with van der Waals corrections and hybrid functional validation, we examine how the physicochemical properties of Ti<sub>2</sub>C MXenes are affected by four prototypical surface terminations (–F, –O, –Cl, –OH). The thermodynamic and dynamical stability of all functionalized systems is confirmed by cohesive energy, formation energy, and phonon dispersion analyses. Termination-dependent modulation of the electronic structure influences key properties such as the work function and quantum capacitance, with the latter linked to the density of states near the Fermi level. Optical response calculations reveal termination-sensitive dielectric screening across the infrared-to-ultraviolet spectrum. These results provide fundamental insights for tailoring low-dimensional materials for electronic and photonic applications through surface engineering.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"44 ","pages":"Article e01100"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Surface functionalization has fueled the emergence of Ti-based MXenes as a class of two-dimensional quantum materials with remarkable tunability. When it comes to surface-induced modification of electrical and optical capabilities, Ti2C, a monolayer version with lower dimensionality than the well-researched Ti3C2, offers a model system. Using density functional theory (DFT) with van der Waals corrections and hybrid functional validation, we examine how the physicochemical properties of Ti2C MXenes are affected by four prototypical surface terminations (–F, –O, –Cl, –OH). The thermodynamic and dynamical stability of all functionalized systems is confirmed by cohesive energy, formation energy, and phonon dispersion analyses. Termination-dependent modulation of the electronic structure influences key properties such as the work function and quantum capacitance, with the latter linked to the density of states near the Fermi level. Optical response calculations reveal termination-sensitive dielectric screening across the infrared-to-ultraviolet spectrum. These results provide fundamental insights for tailoring low-dimensional materials for electronic and photonic applications through surface engineering.

Abstract Image

揭示表面功能化在调整Ti2C MXenes的电子、光学和量子电容特性中的作用
表面功能化推动了ti基MXenes作为一类具有显著可调性的二维量子材料的出现。当涉及到电学和光学性能的表面诱导修饰时,Ti2C,一种比已经得到充分研究的Ti3C2低维的单层版本,提供了一个模型系统。利用范德华修正的密度泛函理论(DFT)和杂化泛函验证,研究了四种原型表面末端(-F, -O, -Cl, -OH)对Ti2C MXenes的物理化学性质的影响。所有功能化体系的热力学和动力学稳定性通过内聚能、形成能和声子色散分析得到证实。电子结构的终端依赖调制影响关键特性,如功函数和量子电容,后者与费米能级附近的态密度有关。光响应计算揭示了在红外到紫外光谱中终端敏感的介电屏蔽。这些结果为通过表面工程定制用于电子和光子应用的低维材料提供了基本见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信