Computational extensive investigation of the structural, electronic, magnetic, mechanical, and optical properties of calcium-doped LaMnO3 via DFT+U

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Haseen Ullah Jan , Qaiser Rafiq , Sikander Azam , Afzal Khan , Rajwali Khan
{"title":"Computational extensive investigation of the structural, electronic, magnetic, mechanical, and optical properties of calcium-doped LaMnO3 via DFT+U","authors":"Haseen Ullah Jan ,&nbsp;Qaiser Rafiq ,&nbsp;Sikander Azam ,&nbsp;Afzal Khan ,&nbsp;Rajwali Khan","doi":"10.1016/j.cocom.2025.e01113","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite oxides, particularly lanthanum manganite (LaMnO<sub>3</sub>), have garnered significant attention due to their exceptional electronic, magnetic, and optical properties, which make them highly promising for applications in spintronics, optoelectronics, and energy storage. In this study, we use density functional theory (DFT) with the generalized gradient approximation plus Hubbard U correction (GGA + U) to systematically investigate the structural, electronic, magnetic, optical, and mechanical properties of pristine LaMnO<sub>3</sub> and its calcium-doped variant (Ca-doped LaMnO<sub>3</sub>). The Wien2k software package was employed for the calculations, incorporating a 4 eV Hubbard U parameter to account for the Mn-3d orbital electron-electron correlation strength. The simulation results show that pristine LaMnO<sub>3</sub> exhibits a well-defined bandgap in the spin-up channel, which confirms its insulating nature. However, the spin-down channel displays either a diminished or absent bandgap due to intense exchange interactions and Jahn-Teller distortions. The introduction of Ca dopants creates holes that reduce the bandgap, transforming the material from an insulating to a metallic state. The magnetic moments in pristine LaMnO<sub>3</sub> localize exclusively on manganese ions, generating a total spin magnetic moment of 7.99904, which confirms its strong antiferromagnetic ordering. After Ca doping, the total spin magnetic moment decreases to 3.00126, indicating a reduced magnetic strength and an increase in metallic properties. The introduction of Ca in LaMnO<sub>3</sub> results in significant modifications to the optical properties, including the dielectric function, absorption, reflectivity, and energy loss rates. The dielectric function analysis reveals that doping leads to a reduction of the bandgap and a shift toward metallic behavior, particularly in the spin-down channel. Further analysis of absorption and refractive index spectra demonstrates that Ca doping enhances material conductivity while diminishing its insulating properties. Additionally, the bulk modulus, shear modulus, and Young modulus decrease after Ca doping, making the material more prone to deformation.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"44 ","pages":"Article e01113"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite oxides, particularly lanthanum manganite (LaMnO3), have garnered significant attention due to their exceptional electronic, magnetic, and optical properties, which make them highly promising for applications in spintronics, optoelectronics, and energy storage. In this study, we use density functional theory (DFT) with the generalized gradient approximation plus Hubbard U correction (GGA + U) to systematically investigate the structural, electronic, magnetic, optical, and mechanical properties of pristine LaMnO3 and its calcium-doped variant (Ca-doped LaMnO3). The Wien2k software package was employed for the calculations, incorporating a 4 eV Hubbard U parameter to account for the Mn-3d orbital electron-electron correlation strength. The simulation results show that pristine LaMnO3 exhibits a well-defined bandgap in the spin-up channel, which confirms its insulating nature. However, the spin-down channel displays either a diminished or absent bandgap due to intense exchange interactions and Jahn-Teller distortions. The introduction of Ca dopants creates holes that reduce the bandgap, transforming the material from an insulating to a metallic state. The magnetic moments in pristine LaMnO3 localize exclusively on manganese ions, generating a total spin magnetic moment of 7.99904, which confirms its strong antiferromagnetic ordering. After Ca doping, the total spin magnetic moment decreases to 3.00126, indicating a reduced magnetic strength and an increase in metallic properties. The introduction of Ca in LaMnO3 results in significant modifications to the optical properties, including the dielectric function, absorption, reflectivity, and energy loss rates. The dielectric function analysis reveals that doping leads to a reduction of the bandgap and a shift toward metallic behavior, particularly in the spin-down channel. Further analysis of absorption and refractive index spectra demonstrates that Ca doping enhances material conductivity while diminishing its insulating properties. Additionally, the bulk modulus, shear modulus, and Young modulus decrease after Ca doping, making the material more prone to deformation.
通过DFT+U对钙掺杂LaMnO3的结构、电子、磁性、机械和光学性质进行了广泛的计算研究
钙钛矿氧化物,特别是锰酸镧(LaMnO3),由于其特殊的电子、磁性和光学性质而引起了极大的关注,这使得它们在自旋电子学、光电子学和能量存储方面的应用非常有前景。在这项研究中,我们使用密度泛函理论(DFT)与广义梯度近似加Hubbard U校正(GGA + U)来系统地研究原始LaMnO3及其钙掺杂变体(ca掺杂LaMnO3)的结构、电子、磁性、光学和力学性质。使用Wien2k软件包进行计算,结合4ev Hubbard U参数来解释Mn-3d轨道电子-电子相关强度。模拟结果表明,原始LaMnO3在自旋向上的通道中表现出明显的带隙,证实了其绝缘性。然而,由于强烈的交换相互作用和jann - teller扭曲,自旋向下通道显示减少或没有带隙。钙掺杂剂的引入产生了减少带隙的空穴,将材料从绝缘状态转变为金属状态。原始LaMnO3的磁矩仅局限于锰离子,产生的总自旋磁矩为7.99904,证实了其强反铁磁有序性。Ca掺杂后,总自旋磁矩降至3.00126,表明磁性强度降低,金属性能提高。在LaMnO3中引入Ca会显著改变LaMnO3的光学性能,包括介电函数、吸收、反射率和能量损失率。电介质功能分析表明,掺杂导致带隙的减小和向金属行为的转变,特别是在自旋向下通道中。进一步的吸收光谱和折射率光谱分析表明,Ca掺杂提高了材料的导电性,但降低了材料的绝缘性能。此外,Ca掺杂后材料的体积模量、剪切模量和杨氏模量降低,使材料更容易发生变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信