Toward a Beautiful Amalgam: The Necessity of Heterogeneity in RNA Science and Research Culture

IF 4.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sudeshi M. Abedeera, Mary Donnelly, James Hagerty, Shaila Kolli, Srinivasa R. Penumutchu, Louis G. Smith and Blanton S. Tolbert*, 
{"title":"Toward a Beautiful Amalgam: The Necessity of Heterogeneity in RNA Science and Research Culture","authors":"Sudeshi M. Abedeera,&nbsp;Mary Donnelly,&nbsp;James Hagerty,&nbsp;Shaila Kolli,&nbsp;Srinivasa R. Penumutchu,&nbsp;Louis G. Smith and Blanton S. Tolbert*,&nbsp;","doi":"10.1021/acsbiomedchemau.5c00114","DOIUrl":null,"url":null,"abstract":"<p >RNA biology exemplifies functional heterogeneity─distinct RNA classes are expressed in tissue- and development-specific contexts, adopt dynamic conformational ensembles, and form intricate, context-dependent interactions with proteins and other molecules to regulate gene expression. These features make RNA a powerful metaphor for reimagining scientific culture. Just as RNA achieves biological complexity through versatility, feedback loops, and communication, research environments thrive when they support dynamic interactions, structural adaptability, and the intentional inclusion of divergent perspectives and experiences. However, unlike RNA, research culture is shaped by human behavior, institutional norms, and systemic barriers─forces that can suppress innovation and limit who contributes to scientific discovery. Scientific excellence demands the integration of wide-ranging perspectives to challenge paradigms and push boundaries. Yet entrenched structures often reward conformity and marginalize creativity born from difference. By embracing the principles inherent to RNA biology─contextual responsiveness, structural plasticity, and cooperativity─we can transform scientific culture into one that is more inclusive, welcoming, and adaptable. This perspective argues that the biological elegance of RNA offers more than molecular insight; it provides a conceptual framework for building research environments that harness the full spectrum of talent in our richly heterogeneous society, ultimately accelerating scientific progress and broadening its societal impact.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"5 4","pages":"519–530"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsbiomedchemau.5c00114","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.5c00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA biology exemplifies functional heterogeneity─distinct RNA classes are expressed in tissue- and development-specific contexts, adopt dynamic conformational ensembles, and form intricate, context-dependent interactions with proteins and other molecules to regulate gene expression. These features make RNA a powerful metaphor for reimagining scientific culture. Just as RNA achieves biological complexity through versatility, feedback loops, and communication, research environments thrive when they support dynamic interactions, structural adaptability, and the intentional inclusion of divergent perspectives and experiences. However, unlike RNA, research culture is shaped by human behavior, institutional norms, and systemic barriers─forces that can suppress innovation and limit who contributes to scientific discovery. Scientific excellence demands the integration of wide-ranging perspectives to challenge paradigms and push boundaries. Yet entrenched structures often reward conformity and marginalize creativity born from difference. By embracing the principles inherent to RNA biology─contextual responsiveness, structural plasticity, and cooperativity─we can transform scientific culture into one that is more inclusive, welcoming, and adaptable. This perspective argues that the biological elegance of RNA offers more than molecular insight; it provides a conceptual framework for building research environments that harness the full spectrum of talent in our richly heterogeneous society, ultimately accelerating scientific progress and broadening its societal impact.

走向美丽的汞合金:RNA科学和研究文化异质性的必要性
RNA生物学是功能异质性的例证──不同的RNA类别在组织和发育特定的环境中表达,采用动态的构象集合,并与蛋白质和其他分子形成复杂的、依赖于环境的相互作用,以调节基因表达。这些特征使RNA成为重新构想科学文化的有力隐喻。就像RNA通过多功能性、反馈回路和交流来实现生物复杂性一样,当研究环境支持动态相互作用、结构适应性和有意包含不同的观点和经验时,研究环境就会蓬勃发展。然而,与RNA不同的是,研究文化是由人类行为、制度规范和系统性障碍形成的,这些因素可能会抑制创新,限制对科学发现做出贡献的人。卓越的科学要求整合广泛的观点,以挑战范式和突破界限。然而,根深蒂固的结构往往奖励一致性,而排斥来自差异的创造力。通过接受RNA生物学固有的原则──环境响应性、结构可塑性和协作性──我们可以将科学文化转变为更具包容性、更受欢迎和适应性的文化。这种观点认为,RNA的生物学优雅性提供的不仅仅是分子洞察力;它为构建研究环境提供了一个概念性框架,在我们这个丰富多样的社会中充分利用人才,最终加速科学进步并扩大其社会影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Bio & Med Chem Au
ACS Bio & Med Chem Au 药物、生物、化学-
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信