Maude Petit, Eugénie Daubas Prade and Andreea R. Schmitzer*,
{"title":"Mitochondria-Targeting Biquaternary Ammonium Compounds: Pancreatic Anticancer Activity and Synergistic Interaction with Metformin","authors":"Maude Petit, Eugénie Daubas Prade and Andreea R. Schmitzer*, ","doi":"10.1021/acsbiomedchemau.4c00130","DOIUrl":null,"url":null,"abstract":"<p >Challenges in pancreatic cancer treatment primarily arise from chemotherapy resistance, cancer cell metastasis, and frequent late-stage diagnoses. These issues significantly compromise the effectiveness of standard treatments and highlight the urgent need for targeted approaches. In this context, we explored the anticancer potential of bis-quaternary ammonium-based compounds (BQACs), which remains largely uncharted. This study examines the structure–activity relationship of amphiphilic bicationic compounds as anticancer agents, focusing on their selectivity against pancreatic cancer cells. Our analysis revealed a potent antiproliferative effect associated with mitochondrial accumulation and subsequent mitochondrial membrane depolarization. Furthermore, combination therapies involving BQACs and chemotherapeutic drugs were explored to enhance treatment efficacy. Consequently, we propose a novel combination of BQACs with metformin, resulting in enhanced cellular uptake of the latter. The synergistic effect of the combination enables a significantly lower effective dose of metformin when used alongside BQACs to achieve therapeutic outcomes.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"5 4","pages":"553–564"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsbiomedchemau.4c00130","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.4c00130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Challenges in pancreatic cancer treatment primarily arise from chemotherapy resistance, cancer cell metastasis, and frequent late-stage diagnoses. These issues significantly compromise the effectiveness of standard treatments and highlight the urgent need for targeted approaches. In this context, we explored the anticancer potential of bis-quaternary ammonium-based compounds (BQACs), which remains largely uncharted. This study examines the structure–activity relationship of amphiphilic bicationic compounds as anticancer agents, focusing on their selectivity against pancreatic cancer cells. Our analysis revealed a potent antiproliferative effect associated with mitochondrial accumulation and subsequent mitochondrial membrane depolarization. Furthermore, combination therapies involving BQACs and chemotherapeutic drugs were explored to enhance treatment efficacy. Consequently, we propose a novel combination of BQACs with metformin, resulting in enhanced cellular uptake of the latter. The synergistic effect of the combination enables a significantly lower effective dose of metformin when used alongside BQACs to achieve therapeutic outcomes.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.