{"title":"A Miniaturized Centrifugal Pump ECMO System Enhances Hemocompatibility in Small Animal Models","authors":"Zhen Yang, Yiai Li, Jingyi Peng, Danhe Jia, Youpeng Zhang, Wenxing Huo, Zhigang Liu, Xian Huang","doi":"10.1002/biot.70103","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Extracorporeal membrane oxygenation (ECMO) is a fundamental treatment for cardiovascular and severe pulmonary diseases, with small animal models providing critical insights into organ protection during cardiopulmonary bypass and ECMO therapy. Conventional roller pumps, however, induce hemolysis and organ injury through repetitive compression-shear exposure, severely limiting their utility. While centrifugal pumps reduce shear stress and are effective in large animal ECMO, their flow range and priming volume are unsuitable for small animals. Here, we present a miniaturized, fully integrated ECMO system with an optimized centrifugal pump tailored for small animal models. The system reduces shear stress, minimizes blood damage, and enhances organ protection. Integrated multi-parameter sensors enable real-time monitoring of blood flow, pressure, and temperature, thereby streamlining setup and improving perioperative support. In a 6-h experiment, the system demonstrated significant hemolysis suppression, improved renal function (with reduced levels of Neutrophil Gelatinase-Associated Lipocalin, or NGAL), and stable hemodynamics. This innovation offers safer extracorporeal support for small animal studies on cardiovascular diseases, organ recovery, and ECMO mechanisms, furthering research into therapeutic interventions. By addressing key limitations of existing pumps, the system provides a reliable platform for exploring hemodynamic and pathophysiological processes in ECMO treatment, establishing a foundation for future preclinical investigations.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70103","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Extracorporeal membrane oxygenation (ECMO) is a fundamental treatment for cardiovascular and severe pulmonary diseases, with small animal models providing critical insights into organ protection during cardiopulmonary bypass and ECMO therapy. Conventional roller pumps, however, induce hemolysis and organ injury through repetitive compression-shear exposure, severely limiting their utility. While centrifugal pumps reduce shear stress and are effective in large animal ECMO, their flow range and priming volume are unsuitable for small animals. Here, we present a miniaturized, fully integrated ECMO system with an optimized centrifugal pump tailored for small animal models. The system reduces shear stress, minimizes blood damage, and enhances organ protection. Integrated multi-parameter sensors enable real-time monitoring of blood flow, pressure, and temperature, thereby streamlining setup and improving perioperative support. In a 6-h experiment, the system demonstrated significant hemolysis suppression, improved renal function (with reduced levels of Neutrophil Gelatinase-Associated Lipocalin, or NGAL), and stable hemodynamics. This innovation offers safer extracorporeal support for small animal studies on cardiovascular diseases, organ recovery, and ECMO mechanisms, furthering research into therapeutic interventions. By addressing key limitations of existing pumps, the system provides a reliable platform for exploring hemodynamic and pathophysiological processes in ECMO treatment, establishing a foundation for future preclinical investigations.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.