Estimating Extreme Wave Surges in the Presence of Missing Data

IF 1.7 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2025-08-17 DOI:10.1002/env.70036
James H. McVittie, Orla A. Murphy
{"title":"Estimating Extreme Wave Surges in the Presence of Missing Data","authors":"James H. McVittie,&nbsp;Orla A. Murphy","doi":"10.1002/env.70036","DOIUrl":null,"url":null,"abstract":"<p>The block maxima approach, which consists of dividing a series of observations into equal-sized blocks to extract the block maxima, is commonly used for identifying and modeling extreme events using the generalized extreme value (GEV) distribution. In the analysis of coastal wave surge levels, the underlying data that generate the block maxima typically have missing observations. Consequently, the observed block maxima may not correspond to the true block maxima, yielding biased estimates of the GEV distribution parameters. Various parametric modeling procedures are proposed to account for the presence of missing observations under a block maxima framework. The performance of these estimators is compared through an extensive simulation study and illustrated by an analysis of extreme wave surges in Atlantic Canada.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70036","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The block maxima approach, which consists of dividing a series of observations into equal-sized blocks to extract the block maxima, is commonly used for identifying and modeling extreme events using the generalized extreme value (GEV) distribution. In the analysis of coastal wave surge levels, the underlying data that generate the block maxima typically have missing observations. Consequently, the observed block maxima may not correspond to the true block maxima, yielding biased estimates of the GEV distribution parameters. Various parametric modeling procedures are proposed to account for the presence of missing observations under a block maxima framework. The performance of these estimators is compared through an extensive simulation study and illustrated by an analysis of extreme wave surges in Atlantic Canada.

Abstract Image

在缺少数据的情况下估计极端浪涌
块极大值法是将一系列观测值划分为大小相等的块来提取块极大值的方法,通常用于利用广义极值(GEV)分布识别和建模极端事件。在对海岸浪涌水平的分析中,产生块极大值的基础数据通常缺少观测值。因此,观测到的区块最大值可能与真实的区块最大值不对应,从而产生对GEV分布参数的有偏差估计。提出了各种参数化建模程序,以解释在块极大值框架下缺失观测值的存在。通过广泛的模拟研究比较了这些估计器的性能,并通过对加拿大大西洋极端浪涌的分析进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信