{"title":"Blind learning of the optimal fusion rule in wireless sensor networks","authors":"J. Perez , I. Santamaria , A. Pagés-Zamora","doi":"10.1016/j.sigpro.2025.110238","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a general framework for blindly estimating the sensor parameters of decision-fusion systems over wireless sensor networks (WSNs). The sensors report their binary decisions to a fusion center (FC) through parallel binary symmetric channels. Then, the FC makes the final decision by combining the noisy sensor decisions according to a certain fusion rule.</div><div>We present an algorithm for the FC to blindly estimate the sensor parameters from the noisy sensor decisions received after a number of sensing periods. The algorithm covers a wide variety of situations that may arise in WSNs. For example, the algorithm is applicable when the FC knows in advance some of the parameters of some sensors, when it knows the true hypothesis for a subset of sensing periods, or when only a subset of sensors communicates their decisions in each sensing period.</div><div>Based on the estimates of the system parameters, optimal channel-aware fusion rules are derived considering the minimum Bayes risk criterion. Simulation results show that, after sufficient sensing periods, the estimates of the WSN parameters are accurate enough for the fusion rule to exhibit near-optimal detection performance.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"239 ","pages":"Article 110238"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425003524","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a general framework for blindly estimating the sensor parameters of decision-fusion systems over wireless sensor networks (WSNs). The sensors report their binary decisions to a fusion center (FC) through parallel binary symmetric channels. Then, the FC makes the final decision by combining the noisy sensor decisions according to a certain fusion rule.
We present an algorithm for the FC to blindly estimate the sensor parameters from the noisy sensor decisions received after a number of sensing periods. The algorithm covers a wide variety of situations that may arise in WSNs. For example, the algorithm is applicable when the FC knows in advance some of the parameters of some sensors, when it knows the true hypothesis for a subset of sensing periods, or when only a subset of sensors communicates their decisions in each sensing period.
Based on the estimates of the system parameters, optimal channel-aware fusion rules are derived considering the minimum Bayes risk criterion. Simulation results show that, after sufficient sensing periods, the estimates of the WSN parameters are accurate enough for the fusion rule to exhibit near-optimal detection performance.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.