{"title":"Enable cross-iteration parallelism for PIM-based graph processing with vertex-level synchronization","authors":"Xiang Zhao, Haitao Du, Yi Kang","doi":"10.1016/j.parco.2025.103149","DOIUrl":null,"url":null,"abstract":"<div><div>Processing-in-memory (PIM) architectures have emerged as a promising solution for accelerating graph processing by enabling computation in memory and minimizing data movement. However, most existing PIM-based graph processing systems rely on the Bulk Synchronous Parallel (BSP) model, which frequently enforces global barriers that limit cross-iteration computational parallelism and introduce significant synchronization and communication overheads.</div><div>To address these limitations, we propose the Cross Iteration Parallel (CIP) model, a novel vertex-level synchronization approach that eliminates global barriers by independently tracking the synchronization states of vertices. The CIP model enables concurrent execution across iterations, enhancing computational parallelism, overlapping communication and computation, improving core utilization, and increasing resilience to workload imbalance. We implement the CIP model in a PIM-based graph processing system, GraphDF, which features a few specially designed function units to support vertex-level synchronization. Evaluated on a PyMTL3-based cycle-accurate simulator using four real-world graphs and four graph algorithms, CIP running on GraphDF achieves an average speedup of 1.8<span><math><mo>×</mo></math></span> and a maximum of 2.3<span><math><mo>×</mo></math></span> compared to Dalorex, the state-of-the-art PIM-based graph processing system.</div></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"125 ","pages":"Article 103149"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819125000250","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Processing-in-memory (PIM) architectures have emerged as a promising solution for accelerating graph processing by enabling computation in memory and minimizing data movement. However, most existing PIM-based graph processing systems rely on the Bulk Synchronous Parallel (BSP) model, which frequently enforces global barriers that limit cross-iteration computational parallelism and introduce significant synchronization and communication overheads.
To address these limitations, we propose the Cross Iteration Parallel (CIP) model, a novel vertex-level synchronization approach that eliminates global barriers by independently tracking the synchronization states of vertices. The CIP model enables concurrent execution across iterations, enhancing computational parallelism, overlapping communication and computation, improving core utilization, and increasing resilience to workload imbalance. We implement the CIP model in a PIM-based graph processing system, GraphDF, which features a few specially designed function units to support vertex-level synchronization. Evaluated on a PyMTL3-based cycle-accurate simulator using four real-world graphs and four graph algorithms, CIP running on GraphDF achieves an average speedup of 1.8 and a maximum of 2.3 compared to Dalorex, the state-of-the-art PIM-based graph processing system.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications