Feasibility in Real-Time Optimization using Lipschitz bounds: Robust optimization Vs. Adaptive filtering

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
A.G. Marchetti
{"title":"Feasibility in Real-Time Optimization using Lipschitz bounds: Robust optimization Vs. Adaptive filtering","authors":"A.G. Marchetti","doi":"10.1016/j.compchemeng.2025.109316","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates two strategies for ensuring feasible-side convergence in Real-Time Optimization (RTO) using Lipschitz-based constraint upper bounds. Strategy 1 embeds the bounds directly into the RTO problem, while Strategy 2 uses them to adaptively tune a filter gain. We compare their performance across three types of bounds: on the plant constraints, constraint modeling error, and constraint gradient error. The results show that Strategy 1 consistently achieves superior convergence, especially under model mismatch or when initialized near active constraints. In contrast, Strategy 2 often leads to premature convergence and suboptimality. These findings support the direct enforcement of Lipschitz bounds as a more robust and effective approach for RTO design.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"203 ","pages":"Article 109316"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425003187","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates two strategies for ensuring feasible-side convergence in Real-Time Optimization (RTO) using Lipschitz-based constraint upper bounds. Strategy 1 embeds the bounds directly into the RTO problem, while Strategy 2 uses them to adaptively tune a filter gain. We compare their performance across three types of bounds: on the plant constraints, constraint modeling error, and constraint gradient error. The results show that Strategy 1 consistently achieves superior convergence, especially under model mismatch or when initialized near active constraints. In contrast, Strategy 2 often leads to premature convergence and suboptimality. These findings support the direct enforcement of Lipschitz bounds as a more robust and effective approach for RTO design.
利用Lipschitz界进行实时优化的可行性:鲁棒优化与自适应滤波
本文研究了利用基于lipschitz的约束上界保证实时优化(RTO)中可行侧收敛的两种策略。策略1将边界直接嵌入到RTO问题中,而策略2使用它们自适应地调整滤波器增益。我们比较了它们在三种边界上的性能:植物约束、约束建模误差和约束梯度误差。结果表明,策略1始终具有优异的收敛性,特别是在模型不匹配或初始化接近主动约束时。相反,策略2常常导致过早收敛和次优性。这些发现支持直接执行Lipschitz边界作为RTO设计更稳健和有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信