Method for fetal ultrasound image classification using pseudo-labelling with PCA-KMeans and an attention-augmented MobileNet-LSTM model

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-08-11 DOI:10.1016/j.mex.2025.103563
Aniket K. Shahade , Priyanka V. Deshmukh , Pritam H. Gohatre , Kanchan S. Tidke , Rohan Ingle
{"title":"Method for fetal ultrasound image classification using pseudo-labelling with PCA-KMeans and an attention-augmented MobileNet-LSTM model","authors":"Aniket K. Shahade ,&nbsp;Priyanka V. Deshmukh ,&nbsp;Pritam H. Gohatre ,&nbsp;Kanchan S. Tidke ,&nbsp;Rohan Ingle","doi":"10.1016/j.mex.2025.103563","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate classification of fetal ultrasound images is critical for early diagnosis, yet remains challenging due to limited labeled data and high inter-class variability. This study presents a robust deep learning framework that combines a MobileNet backbone with multi-head self-attention and LSTM layers to enhance feature learning and temporal context. To address data scarcity and imbalance, unsupervised clustering was employed using Principal Component Analysis (PCA) for dimensionality reduction and K-means (k=4) for pseudo-label generation. These pseudo-labeled clusters were then balanced using oversampling techniques. The proposed model was trained using transfer learning on the augmented dataset and achieved a test accuracy of approximately 98 % with a macro-F1 score of 0.98, indicating highly reliable classification performance.<ul><li><span>•</span><span><div>Employed PCA (100 components) and K-means (k=4) for effective pseudo-labeling and class balancing.</div></span></li><li><span>•</span><span><div>Designed a hybrid deep learning architecture using MobileNet, multi-head attention, and LSTM.</div></span></li><li><span>•</span><span><div>Achieved ∼98 % test accuracy and 0.98 macro-F1 score, demonstrating strong model generalization.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103563"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125004078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate classification of fetal ultrasound images is critical for early diagnosis, yet remains challenging due to limited labeled data and high inter-class variability. This study presents a robust deep learning framework that combines a MobileNet backbone with multi-head self-attention and LSTM layers to enhance feature learning and temporal context. To address data scarcity and imbalance, unsupervised clustering was employed using Principal Component Analysis (PCA) for dimensionality reduction and K-means (k=4) for pseudo-label generation. These pseudo-labeled clusters were then balanced using oversampling techniques. The proposed model was trained using transfer learning on the augmented dataset and achieved a test accuracy of approximately 98 % with a macro-F1 score of 0.98, indicating highly reliable classification performance.
  • Employed PCA (100 components) and K-means (k=4) for effective pseudo-labeling and class balancing.
  • Designed a hybrid deep learning architecture using MobileNet, multi-head attention, and LSTM.
  • Achieved ∼98 % test accuracy and 0.98 macro-F1 score, demonstrating strong model generalization.

Abstract Image

基于PCA-KMeans和注意增强MobileNet-LSTM模型的胎儿超声图像伪标记分类方法
胎儿超声图像的准确分类对早期诊断至关重要,但由于有限的标记数据和高类别间变异性,仍然具有挑战性。本研究提出了一个强大的深度学习框架,该框架将MobileNet骨干网与多头自注意和LSTM层相结合,以增强特征学习和时间上下文。为了解决数据稀缺和不平衡问题,采用无监督聚类,使用主成分分析(PCA)降维,k -means (k=4)生成伪标签。然后使用过采样技术平衡这些伪标记簇。该模型在增强数据集上使用迁移学习进行训练,测试准确率约为98%,宏观f1分数为0.98,表明分类性能高度可靠。•采用PCA(100个分量)和k -means (k=4)进行有效的伪标记和类平衡。•使用MobileNet、多头注意力和LSTM设计混合深度学习架构。•实现了~ 98%的测试精度和0.98的宏观f1分数,显示出强大的模型泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信