Single-Step Latent Diffusion for Underwater Image Restoration.

IF 18.6
Jiayi Wu, Tianfu Wang, Md Abu Bakr Siddique, Md Jahidul Islam, Cornelia Fermuller, Yiannis Aloimonos, Christopher A Metzler
{"title":"Single-Step Latent Diffusion for Underwater Image Restoration.","authors":"Jiayi Wu, Tianfu Wang, Md Abu Bakr Siddique, Md Jahidul Islam, Cornelia Fermuller, Yiannis Aloimonos, Christopher A Metzler","doi":"10.1109/TPAMI.2025.3599775","DOIUrl":null,"url":null,"abstract":"<p><p>Underwater image restoration algorithms seek to restore the color, contrast, and appearance of a scene that is imaged underwater. They are a critical tool in applications ranging from marine ecology and aquaculture to underwater construction and archaeology. While existing pixel-domain diffusion-based image restoration approaches are effective at restoring simple scenes with limited depth variation, they are computationally intensive and often generate unrealistic artifacts when applied to scenes with complex geometry and significant depth variation. In this work we overcome these limitations by combining a novel network architecture (SLURPP) with an accurate synthetic data generation pipeline. SLURPP combines pretrained latent diffusion models-which encode strong priors on the geometry and depth of scenes-with an explicit scene decomposition-which allows one to model and account for the effects of light attenuation and backscattering. To train SLURPP we design a physics-based underwater image synthesis pipeline that applies varied and realistic underwater degradation effects to existing terrestrial image datasets. This approach enables the generation of diverse training data with dense medium/degradation annotations. We evaluate our method extensively on both synthetic and real-world benchmarks and demonstrate state-of-the-art performance. Notably, SLURPP is over $200\\times$ faster than existing diffusion-based methods while offering $\\sim 3 dB$ improvement in PSNR on synthetic benchmarks. It also offers compelling qualitative improvements on real-world data. Project website https://tianfwang.github.io/slurpp/.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3599775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater image restoration algorithms seek to restore the color, contrast, and appearance of a scene that is imaged underwater. They are a critical tool in applications ranging from marine ecology and aquaculture to underwater construction and archaeology. While existing pixel-domain diffusion-based image restoration approaches are effective at restoring simple scenes with limited depth variation, they are computationally intensive and often generate unrealistic artifacts when applied to scenes with complex geometry and significant depth variation. In this work we overcome these limitations by combining a novel network architecture (SLURPP) with an accurate synthetic data generation pipeline. SLURPP combines pretrained latent diffusion models-which encode strong priors on the geometry and depth of scenes-with an explicit scene decomposition-which allows one to model and account for the effects of light attenuation and backscattering. To train SLURPP we design a physics-based underwater image synthesis pipeline that applies varied and realistic underwater degradation effects to existing terrestrial image datasets. This approach enables the generation of diverse training data with dense medium/degradation annotations. We evaluate our method extensively on both synthetic and real-world benchmarks and demonstrate state-of-the-art performance. Notably, SLURPP is over $200\times$ faster than existing diffusion-based methods while offering $\sim 3 dB$ improvement in PSNR on synthetic benchmarks. It also offers compelling qualitative improvements on real-world data. Project website https://tianfwang.github.io/slurpp/.

单步潜扩散水下图像恢复。
水下图像恢复算法旨在恢复水下成像的场景的颜色,对比度和外观。它们是从海洋生态学和水产养殖到水下建筑和考古等应用领域的重要工具。虽然现有的基于像素域扩散的图像恢复方法可以有效地恢复深度变化有限的简单场景,但当应用于具有复杂几何和显著深度变化的场景时,它们的计算量很大,并且经常产生不现实的伪影。在这项工作中,我们通过将新颖的网络架构(SLURPP)与精确的合成数据生成管道相结合来克服这些限制。SLURPP结合了预训练的潜在扩散模型(对场景的几何形状和深度进行强先验编码)和明确的场景分解(允许建模并解释光衰减和后向散射的影响)。为了训练SLURPP,我们设计了一个基于物理的水下图像合成管道,该管道将各种真实的水下退化效果应用于现有的陆地图像数据集。这种方法能够生成具有密集介质/退化注释的不同训练数据。我们在合成基准和实际基准上广泛评估我们的方法,并展示了最先进的性能。值得注意的是,SLURPP比现有的基于扩散的方法快200多倍,同时在合成基准测试中提供了3 dB的PSNR改进。它还对真实世界的数据提供了令人信服的定性改进。项目网站https://tianfwang.github.io/slurpp/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信